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ABSTRACT

The postprocessing step from the density result in topology
optimization to a parametric CAD model is typically most time
consuming and usually involves several hands on maneuvers by
an engineer. In this paper we propose an approach in order to
automate this step by using soft non-linear support vector ma-
chines (SVM). Our idea is to generate the boundaries separating
regions of material (elements with densities equal to one) and
no material (elements with densities equal zero) obtained from
topology optimization automatically by using SVM. The hyper-
surface of the SVM can then in the long run be explicitly imple-
mented in any CAD software. In this work we generate these
hypersurfaces by solving the dual formulation of the SVM with
soft penalization and nonlinear kernel functions using quadratic
programming or the sequential minimal optimization approach.
The proposed SVM-based postprocessing approach is studiedon
topology optimization results of orthotropic elastic design do-
mains with mortar contact conditions studied most recentlyin a
previous work. The potential energy of several bodies with non-
matching meshes is maximized. In such manner no extra adjoint
equation is needed. Intermediate density values are penalized us-
ing SIMP or RAMP, and the regularization is obtained by apply-
ing sensitivity or density filters following the approachesof Sig-
mund and Bourdin. The study demonstrates that the SVM-based
postprocessing approach automatically generates proper hyper-
surfaces which can be used efficiently in the CAD modelling.

INTRODUCTION

Today, topology optimization is a standard tool in product
development [1]. In particular, the problem of minimization of
compliance for a prescribed volume fraction is most established.
But still the transfer of the optimal solution of element densi-
ties to a parametric CAD geometry is time consuming. In this
work, we propose a postprocessing approach of the topology
optimization solution by adopting soft non-linear supportvec-
tor machines. The soft non-linear support vector machine in-
troduced by Cortes and Vapnik [2] defines a paradigm shift in
machine learning and the paper has been cited more than 15000
times. By adopting the kernel trick and the soft penalization,
we are able to classify non-linear separable data includingmis-
classified data points. In this work, we suggest to use the soft
non-linear SVM to classify the optimal element densities into
a material and non-material geometry description with smooth
separating boundaries which can be used to set up the CAD ge-
ometry as shown in Figure 1. In the long run the optimal support
vectors could be integrated into the CAD software directly in or-
der to support an automatic postprocessing process of topology
optimization solutions. A similar approach for level-set-based
topology optimization was presented recently by Chu et al. [3].
Examples of other approaches for interpretation of topology opti-
mization solutions can be found in e.g. [4–9]. For readers not fa-
miliar with SVM, an excellent introduction to this machine learn-
ing discipline is found in the textbook by Hamel [10]. For readers
not familiar with topology optimization we suggest the textbook
by Bendsø and Sigmund [11].
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Figure 1. Automatic postprocessing of topology optimization solution using support vector machines.

In a standard formulation of topology optimization, such as
the SIMP or RAMP model, each elemente is equipped with a
center pointxe and a density valueρe, whereρe = 0 (or a small
numberε in order to avoid singularities) means no material in the
element andρe = 1 corresponds to a filled element. Thus, for an
optimal solution we can identify one set of pointsxe with density
valuesρe = 0 and another set with density valuesρe = 1. By
adopting the idea of support vector machines we can classifythe
data(xe,ρe) for all elementse of the design domain into these
two sets by finding a separating hypersurface that maximizesthe
distance from this boundary to the closest point of each set,see
Figure 2. These points are called the support vectors and will
uniquely define the separating boundary between no materialand
filled regions. By utilizing the kernel trick we can do this for
non-linear separable sets and by adding a penalty term to the
objective function we also handle misclassified points efficiently.
The kernel trick is performed for the dual problem which we
then solve by quadratic programming (quadprog.min Matlab) or
sequential minimal optimization [12].

The implementation of the proposed SVM-based postpro-
cessing approach is tested on standard compliance problemsas
well as on optimal solutions obtained for design domains in uni-
lateral contact with non-matching meshes. Most recently this
was treated in Strömberg [13] by maximizing the potential en-
ergy formulated by using mortar contact conditions for design
domains with orthotropic elasticity. It is well-known thatthe op-
timal solution strongly depends on the boundary conditionsap-
plied on the design domains. In fact, the optimal layout is extra
sensitive to unilateral contact conditions. This was demonstrated
in Strömberg and Klarbring [14] and Strömberg [15] by perform-
ing topology optimization of structures with unilateral contact
conditions. In those paper, optimal layouts were obtained for de-
sign domains in unilateral contact with matching meshes. Here,
we treat design domains with non-matching meshes by adopting

the celebrated mortar approach [16,17]. Furthermore, instead of
using the compliance, we choose the potential energy as objec-
tive function for the nested problem. In such manner, no extra
adjoint adjoint equation is needed in the sensitivity analysis. A
similar approach was used for topology optimization of hyper-
elastic bodies in Klarbring and Strömberg [18], se also thenote
in [19].

�
�
�
�

�� ��
��
��
��

�
�
�
�

x2

x1

Support vectors

yi =−1

ρe = 0 (no material)

ρe = 1 (material)

SVM-based
boundary

yi = 1

Figure 2. The basic idea of the proposed SVM-based postpro-
cessing approach.

The outline of the paper is as follows: in the next section
we set up topology optimization for design domains in unilateral
contact by maximizing the potential energy, in section 2 we treat
non-matching meshes with the mortar approach, in section 3 the

2 Copyright c© 2018 by ASME



formulation of soft non-linear support vector machines is pre-
sented, section 4 presents sequential minimal optimization and,
finally, some numerical results are presented together withcon-
cluding remarks.

1 TOPOLOGY OPTIMIZATION
Let us consider a system of bodies which are parameterized

with the SIMP or RAMP model. The design parametersρe are
collected inρρρ. The stiffness matrix of the system is obtained by
the following assembly procedure (SIMP or RAMP):

K = K(ρρρ) =
nel⋂
e=1

ρn
eke or

nel⋂
e=1

ρe

1+n(1−ρe)
ke, (1)

whereke is an element stiffness matrix given by orthotropic elas-
ticity (for details see [13]),n= 3 or 4,

⋂
represents an assembly

operator andnel is the number of elements. The system of bodies
is subjected to external forcesF and unilateral contact conditions
formulated by the mortar approach presented in the next section.

The state of equilibrium of the system is obtained by mini-
mizing the potential energy subjected to the unilateral constraints
between the bodies. The potential energy of the system reads

Π(ρρρ,d) =
1
2

dTK(ρρρ)d−FTd, (2)

whered contains nodal displacements. Thus, for a given density
distributionρρρ = ρ̂ρρ, the equilibrium state is found by solving

{

min
d

Π(ρ̂ρρ,d)
s.t. CSd+CMd− g ≤ 0,

(3)

whereCS andCM are defined by the mortar approach in the next
section. The corresponding KKT-conditions are given by

Kd+CT
SPn+CT

MPn = F (4)

and

Pn ≥ 0, CSd+CMd− g ≤ 0, Pn◦ (CSd+CMd− g) = 0, (5)

where Pn contains Lagrange multipliersPA
n , which are inter-

preted as contact forces,g is a vector of initial gapsgA and◦ rep-
resents the Hadamard product. By solving these KKT-conditions
using the augmented Lagrangian approach and a non-smooth
Newton method, we obtaind = d(ρρρ) andPn = Pn(ρρρ). An early

implementation of the augmented Lagrangian approach usinga
non-smooth Newton method is found in [20].

For the nested state problem presented above, we maximize
the potential energy, i.e.



















max
ρρρ

Π(ρρρ,d(ρρρ))

s.t.







nel

∑
e=1

Veρe = V̂,

εεε ≤ ρρρ ≤ 1,

(6)

whereVe represents the volume of elemente for ρe = 1, V̂ is
the total amount of material to be distributed,εεε={ε, . . . ,ε}T is a
vector of small numbersε and1={1, . . . ,1}T .

The objective function in (6) can be interpreted by inserting
the KKT-conditions from (4) and (5) intoΠ(ρρρ,d(ρρρ)). This yields

Π(ρρρ,d(ρρρ)) =−
1
2

FTd−
1
2

PT
n g. (7)

Thus, maximizing the potential energy is equivalent to minimiz-
ing

FTd+PT
n g.

The first term is the definition of the well-known compliance,
the second term implies thatPA

n is minimized forgA > 0 and
maximized whengA < 0. Of course, forg=0, the established
compliance optimization problem is recovered.

The sensitivity analysis is performed by using the corre-
sponding Lagrangian

L(ρρρ,d,Pn) = Π(ρρρ,d)+PT
n (CSd+CMd− g). (8)

At the state of equilibrium defined by the KKT-conditions in (5)
it is clear that the Lagrangian is equivalent to the potential energy,
i.e.

L = L(ρρρ,d(ρρρ),Pn(ρρρ)) = Π(ρρρ,d(ρρρ)). (9)

This is utilized in following way:

∂Π
∂ρe

=
∂L

∂ρe
+

(

∂L

∂d

)T ∂d
∂ρe

+

(

∂L

∂Pn

)T ∂Pn

∂ρe
. (10)

The first term in (10) equals

∂L

∂ρe
=

1
2

dT K
∂ρe

d, (11)
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where

∂K
∂ρe

= nρn−1
e ke or

1+n
(1+n(1−ρe))2 ke. (12)

The remaining terms are all zeros by the KKT-conditons in (4)
and (5). This is verified below.

∂L

∂d
= Kd−F+CT

SPn+CT
MPn = 0, (13a)

(

∂L

∂Pn

)T ∂Pn

∂ρe
= (CSd+CMd− g)T ∂Pn

∂ρe
= 0. (13b)

Perhaps, the latter result is not obvious forPn = 0. However, this
is true by taking the derivative of the following formulation of
the complementary condition in (5):

∂
∂ρe

(

PT
n (CSd+CMd− g) = 0

)

, (14)

which yields

(

∂Pn

∂ρe

)T

(CSd+CMd− g)+PT
n (CS+CM)

∂d
∂ρe

= 0 (15)

which in turn proofs (13b) forPn = 0.

Figure 3. Non-matching meshes of a contact interface.

2 THE MORTAR APPROACH
Contact between deformable bodies with non-matching

meshes as shown in Figure 3 can efficiently be treated by ap-
plying the mortar approach. The mortar approach is briefly pre-
sented here in a setting of small displacements. In the case of

small displacements, the potential contact zone is identified by
two contact surfacesΓi

c that are almost coinciding, i.e.Γ1
c ≈ Γ2

c.
Γ1

c belongs to the first bodyΩ1 (slave body) andΓ2
c is a part of

the second oneΩ2 (master body). The virtual power of the total
contact pressurep on this potential contact zone is defined by

P
p
int =

∫
Γ1

c

p ·w1dA−

∫
Γ2

c

p ·w2dA, (16)

wherewi denotes the virtual velocity field of respectively body.
Since,Γc = Γ1

c ≈ Γ2
c, (16) can also be written more compactly as

P
p
int =

∫
Γc

pi(w1
i −w2

i )dA. (17)

By introducing the normal contact pressurepn and assuming that
the tangential forces are zero, we can rewrite (17) to

P
p
int =

∫
Γc

pn(w1
i −w2

i )ni dA, (18)

whereni represents the outward unit normal of the slave surface
Γ1

c.
The finite element discretization of (18) is done by introduc-

ing the following approximations:

pn =
n

∑
A=1

NAλA, (19a)

w1
i =

n

∑
A=1

NAcA
i , (19b)

w2
i =

m

∑
A=1

MAcA
i . (19c)

Here,NA = NA(x) represents the shape functions onΓ1
c which

are taken to be the corresponding trace functions of the global
shape functions onΩ1. The total number of shape functionsNA

on Γ1
c is n. In a similar way,MA = MA(x) represents the shape

functions onΓ2
c, which are taken to bem in number. By inserting

(19) into (18), one gets

P
p
int =

n

∑
A=1

n

∑
B=1

∫
Γc

NANBni dAλAcB
i −

n

∑
A=1

m

∑
B=1

∫
Γc

NAMBni dAλAcB
i

(20)
or written as

P
p
int =

n

∑
A=1

n

∑
B=1

CAB
Si λAcB

i +
n

∑
A=1

m

∑
B=1

CAB
Mi λAcB

i , (21)
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Figure 4. Design domains with boundary conditions.

where

CAB
Si =

∫
Γc

NANBni dA, (22a)

CAB
Mi =−

∫
Γc

NAMBni dA. (22b)

The latter integral is known as the mortar integral. It is tricky to
solve this integral because it cannot in general be dived into sub-
domains defined by the finite elements depending on the non-
matching meshes. One way of fixing this problem is to us a
quadrature rule with many integration points such as the Lobatto
rule with 10 points presented in Table 1. This is utilized in the
present paper.

Table 1. Lobatto rule with nint=10 integration points.

nint ξi Wi

10 ±0.1652789577 0.3275397612

±0.4779249498 0.2920426836

±0.7387738651 0.2248894320

±0.9195339082 0.1333059908

±1 0.0222222222

3 SUPPORT VECTOR MACHINE
In this section, we present the dual formulation of the soft

non-linear support vector machine. First we introduce the origi-
nal linear SVM, which actually was suggested already in the 60s
by Vapnik, then we apply the kernel trick and, finally, regularize
the problem.

Let us considerN sampling pointsxi , which take valuesyi =
1 or yi = −1. In this work, we let the sampling points be the
center points of the elementsxi = xe, yi =1 corresponds toρe= 1

and we setyi = −1 for ρe = 0. Furthermore, we assume that it
exists a hyper-plane

w ·x+b= 0, (23)

which separate these sampling points into two subsets; one that
only takes valuesyi = 1 (material) and the other one with values
yi = −1 (no material). This is shown in Figure 2, where the
basic idea of the proposed SVM-based postprocessing approach
is illustrated. We also assume that the following constraints are
satisfied:

yi(w ·xi +b)≥ 1, i = 1, . . . ,N. (24)

The shortest distances toxi from a hyper-plane defined in (23) is
given by

xi = x+ γi w
‖w‖

. (25)

(25) inserted in (24) yields

yi(w ·x+b+ γi‖w‖)≥ 1. (26)

By utilizing (23), one obtains

γi ≥ 1/‖w‖ for yi = 1, (27a)

γi ≤−1/‖w‖ for yi =−1. (27b)

Thus, the lower bound on the shortest distance|γi | is maximized
by minimizing ‖w‖. This is the key idea of the original linear
support vector machine formulation, which reads







min
(w,b)

1
2
‖w‖2

s.t. 1− yi(w ·xi +b)≤ 0, i = 1, . . .N.
(28)
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Obviously, the closest sampling points to the optimal hyper-plane

w∗ ·x+b∗ = 0 (29)

are obtained when

yi(w∗ ·xi +b∗) = 1. (30)

Sampling points satisfying (30) are called support vectors, see
Figure 2. It is also obvious that in the region between the opti-
mal hyper-plane defined by (29) and the support vectors is empty
of sampling points. Thus, the support vector machine formula-
tion in (28) finds a hyper-plane that maximizes the size of this
region and in our SVM-based postprocessing approach finds a
hyper-plane in the transition between material and non material.
Thus, the proposed SVM-based postprocessing approach finds
an hyper-surface that is positioned at the center of the blurry re-
gion caused by the density filtering.

The Karush-Kuhn-Tucker conditions of the support vector
machine in (28) are given by

0 = w−
N

∑
i=1

λiy
ixi , (31a)

0=
N

∑
i=1

λiy
i , (31b)

λi ≥ 0, (31c)

1− yi(w ·xi +b)≤ 0, (31d)

λi
(

1− yi(w ·xi +b)
)

= 0. (31e)

The corresponding Lagrangian function is

L = L(λλλ,w,b) =
1
2
‖w‖2+

N

∑
i=1

λi
(

1− yi(w ·xi +b)
)

. (32)

Furthermore, the dual formulation of the support vector machine
in (28) reads

max
λλλ≥0

min
(w,b)

L(λλλ,w,b). (33)

By inserting (31a) in (32), one obtains

L(λλλ,w(λ),b) =−
1
2

N

∑
i=1

N

∑
j=1

λiλ jy
iy jxi ·x j +

N

∑
i=1

λi −b
N

∑
i=1

λiy
i .

(34)

In addition, the latter part is zero by (31b). In conclusion,the
dual support vector machine formulation is given by



























min
λλλ

1
2

N

∑
i=1

N

∑
j=1

λiλ jy
iy jxi ·x j −

N

∑
i=1

λi

s.t.







N

∑
i=1

λiy
i = 0,

λi ≥ 0, i = 1, . . . ,N.

(35)

From the optimal solutionλλλ∗ of the dual support vector machine
in (35), we obtain the corresponding support vector machineso-
lution from the Karush-Kuhn-Tucker conditions in (31) as

w∗ =
N

∑
i=1

λ∗
i yixi (36)

and

b= 1/yi −w∗ ·xi (37)

for anyλ∗
i > 0. Notice, by using (36), the optimal hyper-plane in

(29) can be written as

N

∑
i=1

λ∗
i yixi ·x+b∗ = 0. (38)

Notice also that you only need to do the summation over support
vector indices, because otherwiseλ∗

i equals zero by the KKT-
conditions.

For non-separable sets of sampling pointsxi , the support
vector machine approach presented above will of course not
work. However, one might transform the sample set to a new
space where it become separable, let say byξξξ = ξξξ(x). In this
new space, the only difference in the derivations of the dualsup-
port vector machine in (35) and (38) is the appearance of a new
scalar product< ξξξi

,ξξξ j
> instead ofxi ·x j . Thus, we do not have

to know the explicit expression of the transformationξξξ = ξξξ(x),
but only the expression of the scalar product of the new space.
The explicit expression of this scalar product is known to bethe
kernel function, i.e.

k(xi ,x j) =< ξξξi
(xi),ξξξ j

(x j)> . (39)

Consequently, by using an appropriate kernel function in (35)
instead ofxi ·x j , e.g. the Gaussian kernel

k= k(x,z) = exp

(

−
‖x− z‖2

2σ2

)

, (40)
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Figure 5. Element densities and the corresponding soft non-linear support vector machine for Michell’s problem.

the sample set can be separated by

N

∑
i=1

λ∗
i yik(xi ,x)+b∗ = 0. (41)

Even if we perform a suitable kernel trick, we might have
some misclassified points such that (35) does not converge toa
solution. This can be treated by applying a regularization of (35).
The established soft regularization of (28) is















min
(w,b,v)

1
2
‖w‖2+C

N

∑
i=1

vi

s.t.

{

1− vi − yi(w ·xi +b)≤ 0, i = 1, . . .N,
vi ≥ 0, i = 1, . . .N.

(42)

The Karush-Kuhn-Tucker conditions in (31) then modify by
adding the following conditions:

C−λi ≥ 0, (43a)

vi ≥ 0, (43b)

vi(C−λi) = 0. (43c)

The corresponding Lagrangian becomes

L =−
1
2

N

∑
i=1

N

∑
j=1

λiλ jy
iy jxi ·x j+

N

∑
i=1

λi −
N

∑
i=1

λivi +C
N

∑
i=1

vi , (44)

where the two latter terms cancel out due to (43c). Thus, the
only difference of the dual support vector machine in (35) for

this regularization is the appearance of an upper bound onλi, i.e.



























min
λλλ

1
2

N

∑
i=1

N

∑
j=1

λiλ jy
iy jk(xi ,x j)−

N

∑
i=1

λi

s.t.







N

∑
i=1

λiy
i = 0,

0≤ λi ≤C, i = 1, . . . ,N.

(45)

Finally, 0< λi <C must be satisfied in order for (37) to be valid.
Here, we have also introduced the kernelk(x,y) in the objec-
tive function. The soft non-linear SVM in (45) is solved using
quadprog.min Matlab or the sequential minimal optimization ap-
proach presented in the next section..

4 Sequential Minimal Optimization
A most simple approach, called the coordinate descent

method, for solving the unconstrained problem

min
x

f (x) (46)

is to minimize f = f (x) with respect to only one componentxi

while keeping the remaining components ofx constant. After
convergencef is minimized with respect to a new component
keeping the other coordinates at constant values. This procedure
is then continued in sequence until convergence is obtained. If
we also include a linear constant as

α0+α1x1+ . . .+αNxN = 0, (47)

then we can extend the coordinate descent method by minimizing
f with respect to two components, sayx1 andx2, while keeping
x3, . . . ,xN constant. By eliminatingx1 from (47) and inserting
x2 = x2(x1) into (46) we recover the original coordinate descent
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Figure 6. Element densities and the corresponding soft non-linear support vector machine for the contact problem with non-matching
meshes.

approach. This is the main idea of sequential minimal optimiza-
tion for solving the dual soft non-linear support vector machine
in (45).

Now, let us treat the SVM in (45) by only consider two com-
ponents ofλλλ as variables, let sayλ1 andλ2, and the remaining
components as constants, i.e.λ3, . . . ,λN. Then, we have instead
the following problem:



















min
(λ1,λ2)

L(λ1,λ2)

s.t.







λ1y1+λ2y2 =−
N

∑
i=3

λiy
i ,

0≤ λ1 ≤C, 0≤ λ2 ≤C,

(48)

where

L(λ1,λ2) =
1
2

k11λ2
1+

1
2

k22λ2
2+ y1y2k12λ1λ2+ . . .

λ1y1
N

∑
i=3

λiy
ik1i +λ2y

2
N

∑
i=3

λiy
ik2i −λ1−λ2+D, (49)

ki j = k(xi ,x j) and D is a constant. Notice that

wi =
N

∑
j=3

λ jy
jki j = f (xi)−b−λ1y

1k1i −λ2y
2k2i (50)

for i = 1,2, where

f (x) =
N

∑
i=1

λiy
ik(xi ,x)+b. (51)

We will usewi in the derivation presented below.
The idea of sequential minimal optimization is now to solve

(48) for pairwise components ofλλλ and to do that in sequence for

different pairs ofλλλ until the global KKT-conditions for (45) are
satisfied, which read

λi ≥ 0, (52a)

1− yi f (xi)− vi ≤ 0, (52b)

λi
(

1− yi f (xi)− vi
)

= 0, (52c)

vi ≥ 0, (52d)

λi −C≤ 0, (52e)

vi(λi −C) = 0. (52f)

Thus, if 0< λi <C, then

yi f (xi) = 1. (53)

Furthermore,

yi f (xi) is

{

≥ 1 if λi = 0,
≤ 1 if λi =C.

(54)

The coordinate descent is now adopted by definingλ1 =
λ1(λ2) from the constraint

λ1+ y1y2λ2 = γ, (55)

where

γ =−y1
N

∑
i=3

λiy
i = λold

1 + y1y2λold
2 (56)

andλold
i is representing starting values ofλi (i = 1,2). Notice

that(yi)2 = 1 is utilized in (55). From (55), we have

λ1 = λ1(λ2) = γ− y1y2λ2. (57)
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By using this in (49), we obtainL = L(λ2) = L(λ1(λ2),λ2).
Thus, the problem in (48) becomes

{

min
λ2

L(λ2)

s.t. λl ≤ λ2 ≤ λu,
(58)

whereλl andλu represent the lower and upper limits onλ2, re-
spectively. These limits are derived in detail below.

The necessary optimality condition for (58) reads

dL

dλ2
=

∂L

∂λ1

∂λ1

∂λ2
+

∂L

∂λ2
, (59)

where

∂L

∂λ1
= λ1k11+λ2y1y2k12+ y1w1−1, (60a)

∂L

∂λ2
= λ2k22+λ1y1y2k12+ y2w2−1, (60b)

∂λ1

∂λ2
=−y1y2. (60c)

Inserting (60) into (59) yields

λ2 =
γy1y2(k11− k12)+ y2(w1−w2)− y1y2+1

k11+ k22−2k12
. (61)

The box constraint 0≤ λi ≤ C must also be satisfied. The
constraint onλ1 implies

0≤ γ− y1y2λ2 ≤C. (62)

Thus, ify1y2 = 1, then

γ−C≤ λ2 ≤ γ, (63)

but if y1y2 =−1, then

−γ ≤ λ2 ≤C− γ. (64)

In addition,

0≤ λ2 ≤C (65)

must of course also be satisfied.

5 NUMERICAL EXAMPLES
The SVM-based postprocessing approach is implemented in

our in-house toolbox TopoBox1 for topology optimization. This
first implementation is done for 2D-problems and so far it seems
to work very well. This is demonstrated here by studying the
problems for the design domains presented in Figure 4. The left
picture in this figure shows the design domain and the boundary
conditions for one of Michell’s classical benchmarks. The center
nodes of the left and right side of the design domain are fixed and
a vertical force is applied at the center of the design domain.

A typical solution of element densities for Michell’s prob-
lem is presented in the left plot of Figure 5, clearly showingthe
transition between densities of zeros and ones depending onthe
filter radius. This is sometimes removed by applying a heavi-
side filter. This is not done in this work. The idea of the SVM-
based postprocessing approach is instead to find a boundary in
this region automatically. This is obtained by training thesoft
non-linear SVM for the solution of densities according to the ap-
proach outlined in the previous sections and the result is plotted
to the right in Figure 5. The resemblance of the densities and
the SVM is very clear. The number of elements is 10000 and the
number of support vectors is 233.

Figure 7. The upper right corner of the contact region is zoomed
in showing the non-matching meshes clearly, which are treated
by using the mortar approach.

The right picture of Figure 4 shows two design domains in
unilateral contact with non-matching meshes which we treatwith
the mortar approach. In Figure 7, the upper right corner of the
contact region is zoomed in, clearly showing the non-matching
meshes used in the problem. The smaller domain of the two is
fixed at the center and the other domain is subjected to a vertical
force at the center node of the right side. This force is treated by
applying two load cases: one with the force point upwards and

1www.fema.se
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the other one with the load pointing downwards. The solutionof
densities is plotted to the left in Figure 6 and the corresponding
SVM is shown to the right in the same figure. The resemblance
of the SVM and the solution of densities is also clear for this
example. The number of elements is 18328 and the number of
support vectors is now 543.

CONCLUDING REMARKS
An approach for postprocessing topology optimization

solutions automatically by using soft non-linear support vector
machines is proposed and implemented. The implementation
is done in our in-house toolbox TopoBox (www.fema.se)
for two-dimensional design domains. Preliminary results are
most promising showing that the SVM represents the transition
boundary between densities with zeros and ones most accu-
rately. One should remark that no additional filtering has been
utilized. In a near future the implementation will be done for
three-dimensional design domains. Our believe is that thisalso
will produce promising results and that the next step then would
be to integrate this SVM-based postprocessing approach with a
CAD software. The CAD geometry is then simply defined by
the support vectors. This is a topic for future work.
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