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ABSTRACT

The postprocessing step from the density result in topology
optimization to a parametric CAD model is typically mostdim
consuming and usually involves several hands on maneuyers b
an engineer. In this paper we propose an approach in order to
automate this step by using soft non-linear support vectar m
chines (SVM). Our idea is to generate the boundaries sejayat
regions of material (elements with densities equal to ome) a
no material (elements with densities equal zero) obtaimeah f
topology optimization automatically by using SVM. The ype
surface of the SVM can then in the long run be explicitly imple
mented in any CAD software. In this work we generate these
hypersurfaces by solving the dual formulation of the SVNh wit
soft penalization and nonlinear kernel functions usingdyasic
programming or the sequential minimal optimization apmioa
The proposed SVM-based postprocessing approach is stadied
topology optimization results of orthotropic elastic dgsido-
mains with mortar contact conditions studied most receintly
previous work. The potential energy of several bodies wath-n
matching meshes is maximized. In such manner no extra adjoin
equationis needed. Intermediate density values are eathlis-
ing SIMP or RAMP, and the regularization is obtained by apply
ing sensitivity or density filters following the approaclé<sSig-

INTRODUCTION

Today, topology optimization is a standard tool in product
development [1]. In particular, the problem of minimizatiof
compliance for a prescribed volume fraction is most esshbli.
But still the transfer of the optimal solution of element dien
ties to a parametric CAD geometry is time consuming. In this
work, we propose a postprocessing approach of the topolog
optimization solution by adopting soft non-linear suppast-
tor machines. The soft non-linear support vector machire in
troduced by Cortes and Vapnik [2] defines a paradigm shift ir
machine learning and the paper has been cited more than 150
times. By adopting the kernel trick and the soft penalizgtio
we are able to classify non-linear separable data includiisy
classified data points. In this work, we suggest to use the so
non-linear SVM to classify the optimal element densitie® in
a material and non-material geometry description with sfmoo
separating boundaries which can be used to set up the CAD g
ometry as shown in Figure 1. In the long run the optimal suppor
vectors could be integrated into the CAD software directlpii-
der to support an automatic postprocessing process ofdgpol
optimization solutions. A similar approach for level-&stsed
topology optimization was presented recently by Chu et3l. [
Examples of other approaches for interpretation of topptayji-
mization solutions can be found in e.g. [4-9]. For readet$ao
miliar with SVM, an excellent introduction to this machirearn-

mund and Bourdin. The study demonstrates that the SVM-baseding discipline is found in the textbook by Hamel [10]. Fordeas

postprocessing approach automatically generates progpeh
surfaces which can be used efficiently in the CAD modelling.

1

not familiar with topology optimization we suggest the etk
by Bendsg and Sigmund [11].
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Figure 1. Automatic postprocessing of topology optimization solutising support vector machines.

In a standard formulation of topology optimization, such as
the SIMP or RAMP model, each elemests equipped with a
center poinx® and a density valuge, wherepe = 0 (or a small
numbete in order to avoid singularities) means no material in the
element ang = 1 corresponds to a filled element. Thus, for an
optimal solution we can identify one set of poirfswith density
valuespe = 0 and another set with density valugs= 1. By
adopting the idea of support vector machines we can clagsfy
data(x®, pe) for all elements of the design domain into these
two sets by finding a separating hypersurface that maxintiees
distance from this boundary to the closest point of eachsset,
Figure 2. These points are called the support vectors arid wil
uniquely define the separating boundary between no mageral
filled regions. By utilizing the kernel trick we can do thisrfo
non-linear separable sets and by adding a penalty term to the
objective function we also handle misclassified points ieffitty.
The kernel trick is performed for the dual problem which we
then solve by quadratic programmirgu@dprog.nin Matlab) or
sequential minimal optimization [12].

The implementation of the proposed SVM-based postpro-
cessing approach is tested on standard compliance prollems
well as on optimal solutions obtained for design domainsiin u
lateral contact with non-matching meshes. Most recently th
was treated in Stromberg [13] by maximizing the potential e
ergy formulated by using mortar contact conditions for gesi
domains with orthotropic elasticity. It is well-known théae op-
timal solution strongly depends on the boundary conditams
plied on the design domains. In fact, the optimal layout isaex
sensitive to unilateral contact conditions. This was destrated
in Stromberg and Klarbring [14] and Stromberg [15] by penfi-
ing topology optimization of structures with unilateralntact
conditions. In those paper, optimal layouts were obtaioed é-
sigh domains in unilateral contact with matching mesheseHe
we treat design domains with non-matching meshes by adpptin

2

the celebrated mortar approach [16, 17]. Furthermoregdasof
using the compliance, we choose the potential energy as-obje
tive function for the nested problem. In such manner, noaextr
adjoint adjoint equation is needed in the sensitivity asialy A
similar approach was used for topology optimization of hype
elastic bodies in Klarbring and Stromberg [18], se alsortbi

in [19].

X2 » Pe= 0 (no material)

y=-1

[ ]

‘/ _|/_/ SVM-based
e / boundary
+: /—I— Pe = 1 (material)
’ y=1
Support vectors

X1
Figure 2. The basic idea of the proposed SVM-based postpro
cessing approach.

The outline of the paper is as follows: in the next section
we set up topology optimization for design domains in ueiiak
contact by maximizing the potential energy, in section 2 reatt
non-matching meshes with the mortar approach, in sectibe 3 t
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formulation of soft non-linear support vector machines lis-p
sented, section 4 presents sequential minimal optimizatia,
finally, some numerical results are presented together auith
cluding remarks.

1 TOPOLOGY OPTIMIZATION

Let us consider a system of bodies which are parameterized

with the SIMP or RAMP model. The design parametessare
collected inp. The stiffness matrix of the system is obtained by
the following assembly procedure (SIMP or RAMP):

Nel Nel

K=K()=()poke or _Pe
(p) lee e ﬂ 1+n(1_pe) e

e=1

1)

whereke is an element stiffness matrix given by orthotropic elas-
ticity (for details see [13])n = 3 or 4, represents an assembly
operator ande, is the number of elements. The system of bodies
is subjected to external forcEsand unilateral contact conditions
formulated by the mortar approach presented in the nexbsect
The state of equilibrium of the system is obtained by mini-
mizing the potential energy subjected to the unilaterabt@mts
between the bodies. The potential energy of the system reads

M(p,d) (@)

:—ZLdTK(p)d— F'd,

whered contains nodal displacements. Thus, for a given density
distributionp = P, the equilibrium state is found by solving

{

whereCs andCy are defined by the mortar approach in the next
section. The corresponding KKT-conditions are given by

minf1(p,d)

(3)
st.Csd+Cud—g <0,

Kd+CLP,+ClPa=F (4)

and

P, >0, Ced+Cyd—g< 0, Pro(Csd+Cpnd—g) =0, (5)

where P, contains Lagrange multiplierB4, which are inter-
preted as contact forcagis a vector of initial gapg® ando rep-
resents the Hadamard product. By solving these KKT-cooaiti

using the augmented Lagrangian approach and a non-smooth

Newton method, we obtaid = d(p) andP, = Pn(p). An early

implementation of the augmented Lagrangian approach wsing
non-smooth Newton method is found in [20].

For the nested state problem presented above, we maximi:
the potential energy, i.e.

maxT1(p.d(p))

Nel
ot {

Z Vepe = \77

e=1

e<p<i,
whereVe represents the volume of elemeanfor pe = 1, V is
the total amount of material to be distributed{e,...,€}" is a
vector of small numbersand1={1,...,1} .

The objective function in (6) can be interpreted by insertin

the KKT-conditions from (4) and (5) intd (p,d(p)). This yields

(6)

1

N(p.d(p) = —5FTd~ 2

2ng.

(7)

Thus, maximizing the potential energy is equivalent to miai
ing

FTd+Pg.

The first term is the definition of the well-known compliance,
the second term implies th&) is minimized forg" > 0 and
maximized wherng® < 0. Of course, forg=0, the established
compliance optimization problem is recovered.

The sensitivity analysis is performed by using the corre-
sponding Lagrangian

L(p,d,Pn) =M(p,d) + Py (Csd+Cud—g).  (8)
At the state of equilibrium defined by the KKT-conditions 5) (
itis clear that the Lagrangian is equivalentto the potéatiargy,
ie.

L= L(p,d(p),Pn(p)) =MN(p,d(p)). (9)
This is utilized in following way:
M _OLL ()M () E
Ope  Ope od / 0pe 0Py /) 0pe
The first term in (10) equals
g—é = %dTa%e : (11)
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where

oK

0pe

1+n

—1
= npe ke ATnA—po)?

or Ke. (12)

The remaining terms are all zeros by the KKT-conditons in (4)
and (5). This is verified below.

‘;g_Kd F+CLPy+Cl,Py =0, (13a)

ar\T aP, 0Py
Ced+Cud—g T — 0, 13b
(0Pn) dpe  \CSATCnd—0) 50 (13b)

Perhaps, the latter result is not obviousfgr= 0. However, this
is true by taking the derivative of the following formulatiof
the complementary condition in (5):

0
— (Pl (Csd+Cnd—g) =0), (14)
Ope
which yields
aPn) T ad
— | (Csd+Cmd—g)+P,(Cs+C 0 (15
(ape (Csd+Cud —g)+Pn (Cs+Cu)zo =0 (15)
which in turn proofs (13b) foP, = 0.
;’/ T ‘I‘\,
e =
! B ‘I,_,,*‘_l . ;! : !
gl s N o
= ‘r i 1- ' ' | 7,_,1"'7

Figure 3. Non-matching meshes of a contact interface.

2 THE MORTAR APPROACH
Contact between deformable bodies with non-matching

meshes as shown in Figure 3 can efficiently be treated by ap-

plying the mortar approach. The mortar approach is brieféy pr
sented here in a setting of small displacements.

4

In the dase o

small displacements, the potential contact zone is idedtifiy
two contact surfaces); that are almost coinciding, i.€% ~ I'2.

'l belongs to the first bod@! (slave body) and'? is a part of
the second on@? (master body). The virtual power of the total
contact pressure on this potential contact zone is defined by

Int_/pwdA /pw

wherew' denotes the virtual velocity field of respectively body.
Sincel¢ =t ~ T2, (16) can also be written more compactly as

mt / pl

By introducing the normal contact pressyxeand assuming that
the tangential forces are zero, we can rewrite (17) to

(16)

17)

,m_/ pn( W —W; )nI dA, (18)

wheren; represents the outward unit normal of the slave surface
ri,

The finite element discretization of (18) is done by introduc
ing the following approximations:

h = S NAAA, 19
P A; (193)
wh = S NACA, 19b
A; (19Db)
W= 3 MACA. 19
A; (19c)

Here,NA = NA(x) represents the shape functions[ghwhich
are taken to be the corresponding trace functions of theagjlob
shape functions o@*. The total number of shape functioN$
onTlisn. In a similar wayMA = MA(x) represents the shape
functions o2, which are taken to bein number. By inserting
(19) into (18), one gets

= NANEn dANACE — NAMBn; dANACE
w22, 22w
(20)
or written as

II"It ; C

AcB, (21)

—i—AZBZC
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Figure 4.
where
C&E= | NANBndA, (22a)
e
e =— | NAMBnidA. (22b)

e

The latter integral is known as the mortar integral. It iskyito
solve this integral because it cannot in general be divexdsuab-
domains defined by the finite elements depending on the non-
matching meshes. One way of fixing this problem is to us a
guadrature rule with many integration points such as theattob
rule with 10 points presented in Table 1. This is utilizedhe t
present paper.

Table 1. Lobatto rule with ;=10 integration points.

&i
+0.1652789577
+0.4779249498
+0.7387738651
4+0.9195339082

+1

W
0.3275397612
0.2920426836
0.2248894320
0.1333059908

0.0222222222

Nint

10

3 SUPPORT VECTOR MACHINE

In this section, we present the dual formulation of the soft
non-linear support vector machine. First we introduce thgi-o
nal linear SVM, which actually was suggested already in O 6
by Vapnik, then we apply the kernel trick and, finally, regida
the problem.

Let us consideN sampling points!, which take valueg =
1 ory' = —1. In this work, we let the sampling points be the
center points of the elements=x¢, y' = 1 corresponds tpe = 1

Design domains with boundary conditions.

and we set/ = —1 for pe = 0. Furthermore, we assume that it
exists a hyper-plane

w-X+b=0, (23)

which separate these sampling points into two subsets;hate t

only takes valueg' = 1 (material) and the other one with values

y = —1 (no material). This is shown in Figure 2, where the
basic idea of the proposed SVM-based postprocessing agproa
is illustrated. We also assume that the following constsaame

satisfied:
y'(w-x +b)>1, i=1

N. (24)

yeeey

The shortest distancesxbfrom a hyper-plane defined in (23) is
given by

W

X =x+V Wl (25)
(25) inserted in (24) yields
Y (W-x+b+V|w[]) > 1. (26)
By utilizing (23), one obtains
y>1/|w| fory =1, (27a)
Y <-1/|w| fory =-1 (27b)

Thus, the lower bound on the shortest distajydés maximized
by minimizing ||w||. This is the key idea of the original linear
support vector machine formulation, which reads

|

min }
(wh) 2 _
s.t. 1-y'(w-x'+b) <0,

2
Iwl 28

i=1,...N.
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Obviously, the closest sampling points to the optimal hyglane

w*-x+b*=0 (29)

are obtained when

y(w-x'+b")=1 (30)
Sampling points satisfying (30) are called support vectees
Figure 2. It is also obvious that in the region between thé opt
mal hyper-plane defined by (29) and the support vectors igyemp
of sampling points. Thus, the support vector machine foanul
tion in (28) finds a hyper-plane that maximizes the size of thi

region and in our SVM-based postprocessing approach finds a

hyper-plane in the transition between material and non riaghte

In addition, the latter part is zero by (31b). In conclusithe
dual support vector machine formulation is given by

1 N N
min Ayyx -x = $ A
PR >
N (35)
s.t. {| Ay =0,
)\|20, |:1,,N

From the optimal solutioh™ of the dual support vector machine
in (35), we obtain the corresponding support vector macbine
lution from the Karush-Kuhn-Tucker conditions in (31) as

Ay (36)

H
Mz

Thus, the proposed SVM-based postprocessing approach finds

an hyper-surface that is positioned at the center of thebher
gion caused by the density filtering.

The Karush-Kuhn-Tucker conditions of the support vector

machine in (28) are given by

0O=w-— _i)\iyixi, (31a)
0= iw, (31b)
Ai ; 0, (31c)
1-y(w-x'+b) <0 (31d)
A (1-y (w-x +b) (31le)
The corresponding Lagrangian function is
1 N . .
= LA\, w,b) = E|\w||2+zim (1-y(w-xX'+b). (32

Furthermore, the dual formulation of the support vector inrae
in (28) reads

maxmin L(A,w,b).

33
A>0 (w,b) (33)

By inserting (31a) in (32), one obtains

yyIxhxd Z)\. bZ)\ v

(34)

LA 71NN
MDD T2, 2,

and

b=1/y —w"-x (37)
for anyA; > 0. Notice, by using (36), the optimal hyper-plane in
(29) can be written as

i)\ryxi X+Db* = (38)

Notice also that you only need to do the summation over suppol
vector indices, because otherwisg equals zero by the KKT-
conditions.

For non-separable sets of sampling poixtsthe support
vector machine approach presented above will of course nc
work. However, one might transform the sample set to a nev
space where it become separable, let say, by&(x). In this
new space, the only difference in the derivations of the dup}
port vector machine in (35) and (38) is the appearance of a ne:
scalar produck &' &' > instead ofx' - xI. Thus, we do not have
to know the explicit expression of the transformatfpa: §(x),
but only the expression of the scalar product of the new space
The explicit expression of this scalar product is known tdatee
kernel function, i.e.

k(x,x1) =< &'(x),8 (x]) > (39)

Consequently, by using an appropriate kernel function B) (3
instead of - x/, e.g. the Gaussian kernel

|x—2])?
202 ’

Copyright © 2018 by ASME
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Figure 5. Element densities and the corresponding soft non-lineppett vector machine for Michell’s problem.

the sample set can be separated by

_i)\i*yik(x‘,x) +b* = (41)

Even if we perform a suitable kernel trick, we might have
some misclassified points such that (35) does not converge to
solution. This can be treated by applying a regularizati35).
The established soft regularization of (28) is

m|n Zw|?4+CS v
o H I 21 j
st{l Vi— Y (W-X +b) <

vi >0, |—1,...N.
The Karush-Kuhn-Tucker conditions in (31) then modify by
adding the following conditions:

i=1,... 42)

C—Ai >0, (43a)
v >0, (43b)
Vi(C—Aj) =0 (43c)

The corresponding Lagrangian becomes

z A y'y'x X]+Zl)\l ZLAIVI +CZ\V|7 (44)

where the two latter terms cancel out due to (43c). Thus, the
only difference of the dual support vector machine in (35) fo

7

this regularization is the appearance of an upper bouriq,are.

1 N N N
- i i
2 z Ay yk(x x]) — Zl)\.
=1j=1 i=
N (45)
st {2 Ay =0,
0<A <C i=1 N.

Finally, 0< Aj < C must be satisfied in order for (37) to be valid.
Here, we have also introduced the kerkét,y) in the objec-
tive function. The soft non-linear SVM in (45) is solved ugin
guadprog.nin Matlab or the sequential minimal optimization ap-
proach presented in the next section..

4 Sequential Minimal Optimization
A most simple approach, called the coordinate descer
method, for solving the unconstrained problem

min f(x) (46)

is to minimize f = f(x) with respect to only one component
while keeping the remaining componentsxtonstant. After
convergenced is minimized with respect to a new component
keeping the other coordinates at constant values. Thiedtoe

is then continued in sequence until convergence is obtaitfed
we also include a linear constant as

Oo+ 01Xy +...+anxn =0, 47

then we can extend the coordinate descent method by mimignizi
f with respect to two components, sayandx,, while keeping
X3,...,XN constant. By eliminating; from (47) and inserting
X2 = Xo(x1) into (46) we recover the original coordinate descent

Copyright © 2018 by ASME



Figure 6. Element densities and the corresponding soft non-lineppsett vector machine for the contact problem with non-miigh

meshes.

approach. This is the main idea of sequential minimal oidami
tion for solving the dual soft non-linear support vector imae
in (45).

Now, let us treat the SVM in (45) by only consider two com-

ponents ofA as variables, let say; andA», and the remaining

components as constants, ig,...,An. Then, we have instead

the following problem:

min L(A1,A2)

(A1,A2) \

s.t. { Ayt hoy? = — i;)\iyi, (48)
0<AM <C,0<A2<C,

where

1 1
L()\l,)\z) = ékll)\i-i- ékzz)\§+y1y2k12)\1)\2+ e

N ) N .
Ayt Z)\iy'kli +A2y? Z)\iy'kz —A1—A2+D, (49)
i= i=
kij = k(x',x)) and D is a constant. Notice that
N .
j=
fori =1,2, where
N
fx) = 217\0/' k(x',x) +b. 1)
i=

We will usew; in the derivation presented below.

The idea of sequential minimal optimization is now to solve
(48) for pairwise components &fand to do that in sequence for

different pairs of\ until the global KKT-conditions for (45) are
satisfied, which read

Ai >0, (52a)
1-yf(x)—v <0, (52b)
A (1-yf(x)—v) =0, (52c)
vi >0, (52d)
Ai—C <0, (52e)
Vi ()\i - C) =0. (52f)

Thus, if 0< Aj < C, then
y i) =1. (53)

Furthermore,

proos (ZHN00 e

The coordinate descent is now adopted by defiing=
A1(A2) from the constraint

M+YY A=y, (55)

where
N
V=3 Ay (56)

and\? is representing starting values &f (i = 1,2). Notice
that(y')? = 1 is utilized in (55). From (55), we have

A =M(A2) =y—Y'yAa. (57)
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By using this in (49), we obtai = L(A2) = L(A1(A2),A2).
Thus, the problem in (48) becomes

{ MnL2) (58)

st <A <Y,

where)! and\Y represent the lower and upper limits bs re-
spectively. These limits are derived in detail below.
The necessary optimality condition for (58) reads

dL AL N | AL

A oMok, O 59)
where
0L
Ve Akit -+ A2ytyPkao +ytwy — 1, (60a)
0L
I, ~ ket AytyPkio +yPwo — 1, (60D)
N
VR v (60c)
Inserting (60) into (59) yields
Y 20w — ) vly2
Ap— Wy (ki1 — Ki2) + y“ (Wi — wp) — yry —1—1' 61)

ki1 + koo — 2k

The box constraint & Aj < C must also be satisfied. The
constraint or\1 implies

0<y-yyA <C. (62)
Thus, ifyly? = 1, then
y—C<A2<y, (63)
but if yly? = —1, then
—y<A2<C—vy. (64)
In addition,
0<A\<C (65)
must of course also be satisfied.
9

5 NUMERICAL EXAMPLES

The SVM-based postprocessing approach is implemented i
our in-house toolbox TopoBdxor topology optimization. This
firstimplementation is done for 2D-problems and so far ingge
to work very well. This is demonstrated here by studying the
problems for the design domains presented in Figure 4. The le
picture in this figure shows the design domain and the boyndar
conditions for one of Michell's classical benchmarks. Tkater
nodes of the left and right side of the design domain are fixed a
a vertical force is applied at the center of the design domain

A typical solution of element densities for Michell’s prob-
lem is presented in the left plot of Figure 5, clearly showting
transition between densities of zeros and ones dependitigeon
filter radius. This is sometimes removed by applying a heavi
side filter. This is not done in this work. The idea of the SVM-
based postprocessing approach is instead to find a bourdary
this region automatically. This is obtained by training sudt
non-linear SVM for the solution of densities according te #p-
proach outlined in the previous sections and the resuliotqd
to the right in Figure 5. The resemblance of the densities an
the SVM is very clear. The number of elements is 10000 and th
number of support vectors is 233.

48 o mm
7 SN

AV

Figure 7. The upper right corner of the contact region is zoomed
in showing the non-matching meshes clearly, which are éxat
by using the mortar approach.

The right picture of Figure 4 shows two design domains in
unilateral contact with non-matching meshes which we trétt
the mortar approach. In Figure 7, the upper right corner ef th
contact region is zoomed in, clearly showing the non-mathi
meshes used in the problem. The smaller domain of the two i
fixed at the center and the other domain is subjected to aakrti
force at the center node of the right side. This force is éeaty
applying two load cases: one with the force point upwards an

lwwy. f ema. se
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the other one with the load pointing downwards. The solutibn [7] Poh-Soong Tang & Kuang-Hua Chang, Integration of Topol-

densities is plotted to the left in Figure 6 and the corresijrum ogy and Shape Optimization for Design of Structural Compo-

SVM is shown to the right in the same figure. The resemblance  nents,Structural and Multidisciplinary Optimizatiqr22, 65-

of the SVM and the solution of densities is also clear for this 82, 2001.

example. The number of elements is 18328 and the number of [8] Gang-Won Jang, Kyung Joo Kim & Yoon Young Kim, Inte-

support vectors is now 543. grated Topology and Shape Optimization Software for Com-
pliant MEMS Mechanism DesigriAdvances in Engineering
Software 39,1-14, 2008.

[9] Yeh-Liang Hsu, Ming-Sho Hs & Chuan-Tang Chen, Inter-
preting Results from Topology Optimization using Density
ContoursComputers & Structure§9, 1049-1058, 2001.

[10] L.H. Hamel, Knowledge Discovery with Support Vector
Machines Wiley-Blackwell, Hoboken, New Jersey, 2009.

[11] M.P. Bendsge. & O. Sigmundlopology Optimization:
Theory, Methods, and ApplicatiarBerlin: Springer, 2003.

[12] J. Platt, Fast training of SVMs using Sequential Minima
Optimization. Advances in Kernel Methods Support Vector
Machine, HobokerMIT Press, Cambridge, 185-208, 1999.

[13] N. Stromberg, Topology Optimization of Orthotropitak-
tic Design Domains with Mortar Contact Conditions, in
Advances in Structural and Multidisciplinary Optimizatjo
1427-1438, 2018.

[14] N. Stromberg and A. Klarbring, Topology Optimizatioh
Structures in Unilateral Contacgtructural and Multidisci-
plinary Optimization41, 57—64, 2010.

[15] N. Stromberg, Topology Optimization of Structuresttwi
Manufacturing and Unilateral Contact Constraints by Min-
imizing an Adjustable Compliance-Volume ProduStruc-
tural and Multidisciplinary Optimizatiop42, 341-350, 2010.

[16] A. Popp, M. Gitterle, M.W. Gee and W.A. Wall, A Dual

CONCLUDING REMARKS

An approach for postprocessing topology optimization
solutions automatically by using soft non-linear suppartter
machines is proposed and implemented. The implementation
is done in our in-house toolbox TopoBoxw{w. f ena. se)
for two-dimensional design domains. Preliminary resules a
most promising showing that the SVM represents the tramsiti
boundary between densities with zeros and ones most accu-
rately. One should remark that no additional filtering hasrbe
utilized. In a near future the implementation will be done fo
three-dimensional design domains. Our believe is thatalsis
will produce promising results and that the next step thealdvo
be to integrate this SVM-based postprocessing approathavit
CAD software. The CAD geometry is then simply defined by
the support vectors. This is a topic for future work.
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