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ABSTRACT: In this work we perform reliability-based designoptimization (RBDO) by classifying the limit
states by using soft non-linear support vector machines (SVM). By adopting the kernel trick in the dual for-
mulation, by using e.g. the Gaussian kernel, we classify non-linear states of fail or safe obtained from design
of experiments. The most probable point (MPP) of the SVM is established in the physical space where the
distance is minimized in the metric of Hasofer-Lind. The solution to the corresponding optimality conditions
is obtained by using Newton’s method with an inexact Jacobian and a line-search of Armijo type. At the MPP,
we perform Taylor expansions of the SVM using intermediate variables defined by the iso-probabilistic trans-
formation. In such manner, we derive a quadratic programming (QP) problem which is solved in the standard
normal space. This is done for several probability distributions such as e.g. lognormal, Gumbel, gamma and
Weibull. The optimal solution to the QP problem is mapped back to the physical space and new Taylor expan-
sions of the SVM are derived and a new QP problem is formulatedand solved. This procedure continues in
sequence until we obtain convergence of our RBDO problem. The steps presented above constitute our pro-
posed FORM-based sequential QP approach for RBDO by using SVM. The target of reliability appearing in
the FORM-based QP problem might also be adjusted using different SORM formulas such as e.g. Breitung,
Hohenbichler or Tvedt, or by applying importance-based Halton or Hammersley sampling. A nice feature of
the proposed SVM-based RBDO approach is that several limit state functions can be represented simultane-
ously by only one single SVM. Thus, the proposed SVM-based RBDO methodology might be considered to be
a rational approach for the treatment of RBDO problems including system reliability. This is demonstrated by
solving established RBDO benchmarks.

1 INTRODUCTION

The soft non-linear support vector machine (SVM)
introduced by Cortes & Vapnik (1995) defines a
paradigm shift in machine learning and the paper has
been cited more than 15000 times. By adopting the
kernel trick and the soft penalization, we are able to
classify non-linear separable data including misclas-
sified data points. In this work, we suggest to use a
single SVM to represent several limit state functions
simultaneously when performing reliability based de-
sign optimization. For readers not familiar with SVM,
an excellent introduction to this machine learning dis-
cipline is found in the textbook by Hamel (2009).

Although the number of papers on SVM-based
RBDO is small, the idea of using SVM in order to
represent limit state functions in RBDO is not new.
Basudhar et al. (2008) solved RBDO problems us-
ing SVM and a particle swarm algorithm. Song et al.
(2012) performed sampling-based RBDO by using
probabilistic sensitivity analysis and virtual support
vector machines. Khatibinia et al. (2013) suggested

a gravitational search algorithm with a weighted least
square support vector machine for RBDO. Wang et al.
(2015) proposed a new SORA-based RBDO method
using SVM as a surrogate model for the limit state
function. Most recently Liu et al. (2017) used SVM-
based sampling in order to improve Kriging models
for RBDO. Another recent paper is by Yang & Hu-
sada (2017), who study seven state of the art methods
from data mining in order to improve accuracy and
efficiency of a single-loop RBDO method.

In this work, we will adopt the SORM-based
sequential quadratic programming (SQP) approach
for RBDO recently suggested by Strömberg (2017),
where we now represent the limit state functions by
using SVM instead of analytical expressions. The
main idea of the proposed method is to represent sev-
eral limit state functions simultaneously with only one
single SVM. In such manner, a RBDO problem with
several reliability constraints boil down to a problem
with only one constraint. We also think that this ap-
proach is a step towards a rational method for treating
problems with system reliability. Reliability analysis



without optimization using a similar idea was recently
investigated by Li et al. (2016).

The proposed method might be consider to be a
metamodel-based approach for RBDO even though
the SVM is not representing the overall behaviour of
the reliability constraint function but only is a repre-
sentation of the limit state or a classification of states
in fail or safe. Metamodel-based RBDO is a most
powerful approach for treating the reliability con-
straints of complex models such as non-linear finite
element models. Popular metamodels for this kind of
applications are e.g. Kriging (Hu et al. 2016), artifi-
cial neural networks (Zhu et al. 2011) and radial ba-
sis function networks (Lv et al. 2015). In Strömberg
(2016) FORM- and SORM-based RBDO of a under-
run protection profile was performed using a new type
of radial basis function networks with a priori bias
suggested by Amouzgar & Strömberg (2017).
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Figure 1: Illustration of the proposed SVM-based RBDO ap-
proach.

The outline of the paper is as follow: in the next
section we review the FORM- and SORM-based SQP
approach for reliability based design optimization that
recently was suggested in Strömberg (2017), in sec-
tion 3 we present the theory of the soft non-linear sup-
port vector machine by deriving the dual formulation
of the maximum margin problem using the Karush-
Kuhn-Tucker (KKT) conditions and introducing the
soft penalization. In section 4 two RBDO examples
are solved using the proposed SVM-based methodol-
ogy, in particular an established benchmark with three
reliability constraints are treated using a single SVM
and we also suggest how to apply SVM-based adap-
tive sampling in order to improve the solution. Finally,
some concluding remarks are presented.

2 SQP-BASED RBDO

Most recently a SORM-based SQP approach for
RBDO was suggested in Strömberg (2017). A brief
presentation of this approach is given in this section.

Let us consider the following RBDO problem:
{

min
µ

f(µ)

s.t. Pr[g(X) ≤ 0] ≥ Ps,
(1)

whereX is a vector ofNVAR uncorrelated random vari-
ablesXi. The mean valueµi of each variableXi is
collected inµ. The functionsf = f(µ) andg = (X)
represent the objective function and constraint, re-
spectively. Thus, the reliability constraint reads that
the probability thatg ≤ 0 must be greater than the
target of reliabilityPs. In this work, we treat this reli-
ability constraint by representing the limit stateg = 0
by support vector machines, see the next section. The
SVM can also be used to classify states of fail or safe,
but that is not the main purpose of using SVM in
this work. The main idea is to represent several limit
states simultaneously by using a single SVM and then
to perform RBDO following the method presented in
this section.

The cumulative distribution of each variable is
given by

Fi(x;θi) =

∫ x

−∞

ρi dx, (2)

whereρi = ρi(x;θi) is the probability density func-
tion for distributions parameters collected inθi =
θi(µi). So far, the following distributions have been
implemented: normal, lognormal, Gumbel, gamma
and Weibull.

The problem in (1) is solved by the SQP approach
as outlined below. At an iteratek with mean values
collected inµk, we perform Taylor expansions off
andg in intermediate variablesYi defined by the iso-
probabilistic transformation, i.e.

Yi = Yi(Xi) = Φ−1
(

Fi(Xi;θi(µ
k
i ))

)

, (3)

whereΦ=Φ(x) is the cumulative distribution of the
standard normal distribution. In addition, the Taylor
expansion ofg is done at the most probable pointxMPP

i

on the limit surface. The Taylor expansion off be-
comesf(η) ≈ f(µk)+

NVAR
∑

i=1

∂f

∂Xi

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(µk
i ;θ

k
i )
ηi +

1

2

NVAR
∑

i=1

NVAR
∑

j=1

H̃ijηiηj ,

(4)

whereη is the mean ofY and

H̃ij =
∂2f

∂Xi∂Xj

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(µk
i ;θ

k
i )

φ(Y k
j )

ρj(µk
j ;θ

k
j )
. (5)
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Figure 2: The left plot showsg > 0 and in the right plotgsvm > 0 is given. Despite the overall behaviour is not captured by the SVM,
the limit state is represented properly.

Furthrmore,̃g = g̃(Y ) ≈

NVAR
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(xMPP
i ;θk

i )

(

Yi − yMPP
i

)

, (6)

whereyMPP
i = Yi(x

MPP
i ) is the most probable point de-

fined by
{

min
X

1

2
Y (X)TY (X)

s.t.g(X) = 0.
(7)

In this work, we solve (7) when the limit stateg(X) =
0 is represented by a soft non-linear SVM as pre-
sented in the next section. This is in turn done by
solving the necessary optimality conditions by using
Newton’s method with an inexact Jacobian.

Finally, by inserting (4) and (6) into (1), we derive
the following QP-problem:







min
ηi

f(η)

s.t.

{

µg̃ ≤ −βtσg̃,
−ǫ ≤ ηi ≤ ǫ,

(8)

where

µg̃ =

NVAR
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(xMPP
i ;θk

i )

(

ηi − yMPP
i

)

,

σg̃ =

√

√

√

√

NVAR
∑

i=1

(

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(x
MPP
i ;θk

i )

)2

.

(9)

Here, βt = Φ−1(Ps) is the target reliability index
which can be corrected by any SORM approach

or Monte Carlo sampling. So far, four SORM ap-
proaches have been implemented, e.g. Breitung,
Hohenbichler and Tvedt. In addition, Halton- and
Hammersley-based importance sampling at the MPP
are also implemented. The optimal solution to (8), de-
notedη∗i , is mapped back from the standard normal
space to the physical space using

µk+1
i ≈ µk

i +
Φ(Y k

i )

ρi(µk
i ;θ

k
i )
η∗i .

Then, a new QP-problem is generated aroundµk+1

and this procedure continues in sequence until con-
vergence is obtained. The QP-problem in (8) solved
usingquadprog.m in Matlab.

3 SUPPORT VECTOR MACHINE

In this section, we present the dual formulation of the
soft non-linear support vector machine. First we in-
troduce the original linear SVM, which actually was
suggested already in the 60s by Vapnik, then we apply
the kernel trick and, finally, regularize the problem.

Let us considerN sampling pointsxi, which take
valuesyi = 1 (fail) or yi = −1 (safe). Furthermore,
we assume that it exists hyper-planes

w ·x+ b = 0, (10)

which separate these sampling points into two sub-
sets; one that only takes valuesyi = 1 and the other
one with valuesyi = −1. This is shown in Figure 1,
where the SVM-based RBDO methodology is illus-
trated. We also assume that the following constraints
are satisfied:

yi(w ·xi + b) ≥ 1, i = 1, . . . ,N. (11)

The shortest distances toxi from a hyper-plane de-
fined in (10) is given by

xi = x+ γi w

‖w‖
. (12)
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Figure 3: Histogram of the objective functionf and the constraintg for the solution obtained by using the SVM. Red lines are showing
the corresponding normal distribution, where green lines mark theµ± 3σ intervals.

(12) inserted in (11) yields

yi(w ·x+ b+ γi‖w‖) ≥ 1. (13)

By utilizing (10), one obtains

γi ≥ 1/‖w‖ for yi = 1, (14a)

γi ≤ −1/‖w‖ for yi = −1. (14b)

Thus, the lower bound on the shortest distance|γi| is
maximized by minimizing‖w‖. This is the key idea
of the original linear support vector machine formu-
lation, which reads







min
(w,b)

1

2
‖w‖2

s.t.1− yi(w ·xi + b) ≤ 0, i = 1, . . .N.
(15)

Obviously, the closest sampling points to the optimal
hyper-plane

w∗ ·x+ b∗ = 0 (16)

are obtained when

yi(w∗ ·xi + b∗) = 1. (17)

Sampling points satisfying (17) are called support
vectors, see Figure 1. It is also obvious that in the re-
gion between the optimal hyper-plane defined by (16)
and the support vectors is empty of sampling points.
Thus, the support vector machine formulation in (15)
finds a hyper-plane that maximizes the size of this re-
gion. This region is augmented with sampling points
in the SVM-based adaptive sampling approach dis-
cussed in the next section.

The Karush-Kuhn-Tucker conditions of the support

vector machine in (15) are given by

0 = w−

N
∑

i=1

λiy
ixi, (18a)

0 =
N
∑

i=1

λiy
i, (18b)

λi ≥ 0, (18c)

1− yi(w ·xi + b) ≤ 0, (18d)

λi

(

1− yi(w ·xi + b)
)

= 0. (18e)

The corresponding Lagrangian function isL =
L(λ,w, b) =

1

2
‖w‖2 +

N
∑

i=1

λi

(

1− yi(w ·xi + b)
)

. (19)

Furthermore, the dual formulation of the support vec-
tor machine in (15) reads

max
λ≥0

min
(w,b)

L(λ,w, b). (20)

By inserting (18a) in (19), one obtains
L(λ,w(λ), b) =

−
1

2

N
∑

i=1

N
∑

j=1

λiλjy
iyjxi ·xj +

N
∑

i=1

λi − b
N
∑

i=1

λiy
i.

(21)

In addition, the latter part is zero by (18b). In conclu-
sion, the dual support vector machine formulation is
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Figure 4: In the left plot the Hammersley sampling of 100 points is shown together with the explicit constraintsgi. To the right the
corresponding SVM is depicted. The limit state surface in cyan corresponds well to the actual limit surfacesgi.

given by






























min
λ

1

2

N
∑

i=1

N
∑

j=1

λiλjy
iyjxi ·xj −

N
∑

i=1

λi

s.t.











N
∑

i=1

λiy
i = 0,

λi ≥ 0, i = 1, . . . ,N.

(22)

From the optimal solutionλ∗ of the dual support vec-
tor machine in (22), we obtain the corresponding sup-
port vector machine solution from the Karush-Kuhn-
Tucker conditions in (18) as

w∗ =
N
∑

i=1

λ∗
i y

ixi (23)

and

b = 1/yi −w∗ ·xi (24)

for any λ∗
i > 0. Notice, by using (23), the optimal

hyper-plane in (16) can be written as

N
∑

i=1

λ∗
i y

ixi ·x+ b∗ = 0. (25)

Notice also that you only need to do the summa-
tion over support vector indices, because otherwiseλ∗

equals zero by the KKT-conditions. This is utilized in
the implementation in order to speed up the evaluation
of the SVM.

For non-separable sets of sampling pointsxi, the
support vector machine approach presented above
will of course not work. However, one might trans-
form the sample set to a new space where it become
separable, let say byξ = ξ(x). In this new space, the
only difference in the derivations of the dual support
vector machine in (22) and (25) is the appearance of a

new scalar product< ξi,ξj > instead ofxi ·xj. Thus,
we do not have to know the explicit expression of the
transformationξ = ξ(x), but only the expression of
the scalar product of the new space. The explicit ex-
pression of this scalar product is known to be the ker-
nel function, i.e.

k(xi,xj) =< ξi(xi),ξj(xj) > . (26)

Consequently, by using an appropriate kernel function
in (22) instead ofxi ·xj, e.g. the Gaussian kernel

k = k(x,z) = exp

(

−
‖x− z‖2

2σ2

)

, (27)

the sample set can be separated by

N
∑

i=1

λ∗
i y

ik(xi,x) + b∗ = 0. (28)

Another kernel function is the polynomial kernel, i.e.

k = k(x,z) = (1 +x · z)p. (29)

Even if we perform a suitable kernel trick, we
might have some misclassified points such that (22)
does not converge to a solution. This can be treated
by applying a regularization of (22). The established
soft regularization of (15) is



















min
(w,b,v)

1

2
‖w‖2 +C

N
∑

i=1

vi

s.t.

{

1− vi − yi(w ·xi + b) ≤ 0, i = 1, . . .N,
vi ≥ 0, i = 1, . . .N.

(30)
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Figure 5: Histograms for the two first active constraintsg1 andg2, respectively. Red lines are showing the corresponding normal
distribution, where green lines mark theµ± 3σ intervals.

The Karush-Kuhn-Tucker conditions in (18) then
modify by adding the following conditions:

C − λi ≥ 0, (31a)

vi ≥ 0, (31b)

vi(C − λi) = 0. (31c)

The corresponding Lagrangian becomesL =

−
1

2

N
∑

i=1

N
∑

j=1

λiλjy
iyjxi ·xj+

N
∑

i=1

λi −

N
∑

i=1

λivi +C

N
∑

i=1

vi,

(32)

where the two latter terms cancel out due to (31c).
Thus, the only difference of the dual support vector
machine in (22) for this regularization is the appear-
ance of an upper bound onλi, i.e.






























min
λ

1

2

N
∑

i=1

N
∑

j=1

λiλjy
iyjk(xi,xj)−

N
∑

i=1

λi

s.t.











N
∑

i=1

λiy
i = 0,

0 ≤ λi ≤ C, i = 1, . . . ,N.

(33)

Finally,0 < λi < C must be satisfied in order for (24)
to be valid. Here, we have also introduced the kernel
k(x,y) in the objective function. The soft non-linear
SVM in (33) is solved usingquadprog.m in Matlab.

4 EXAMPLES

In this section, we demonstrate by solving two exam-
ples that the soft non-linear SVM presented in the pre-

vious section can represent the limit states properly
such that the SQP-based RBDO methodology can be
applied for solving RBDO problems with SVM-based
limit state functions. The first problem was consid-
ered in Strömberg (2016), where SLP-based RBDO
was performed by adopting radial basis function net-
works (RBFN) as metamodels. The second example
is a most well-know benchmark for evaluating new
RBDO approaches, see e.g. Youn and Choi (2004).

The first example reads



















min
µi

√

1000

(

4

µ1
− 2

)2

+ 1000

(

4

µ1
− 2

)2

s.t.

{

Pr[(X1 − 0.5)4 + (X2 − 0.5)4 ≤ 2] ≥ Ps,
1 ≤ µi ≤ 4,

(34)

wherePs = 0.999 and VAR[Xi] = 0.12. The determin-
istic solution is (1.5,1.5) and the minimum of the un-
constrained objective function is found at (2,2). The
constraintg > 0 is plotted to the left in Figure 2. The
solution to (34) obtained by our SQP-based RBDO
approach is (1.2705,1.2705). The corresponding reli-
ability is 99.9%.

Now, let us consider the problem in (34) as a
“black-box”, which we represent with metamodels for
a sample set of 100 Hammersley points as depicted in
Figure 4 for the next example. In particular, we let
the objective function be represented by a radial ba-
sis function network as in Strömberg (2016) and the
limit state is represented by a SVMgsvm. In Figure 2,
gsvm > 0 is plotted. Notice thatgsvm only represents
the limit state properly but not the overall behaviour.
Of course, the classification of fail or safe is obtained
by taking sign(gsvm). Instead of solving (34), we solve
the metamodel-based representation of (34), i.e. the
radial basis function taken as our objective function
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Figure 6: Classification in fail (red) or safe (blue) using the SVM.

andgsvm is the limit state function. The correspond-
ing solution is (1.3410, 1.2315) and the reliability for
this solution becomes 99.7%, slightly lower than the
target of 99.9%. Histograms for the objective func-
tion and the constraint are plotted in Figure 3. Notice
the non-symmetric characteristic of the solution. This
as well as the reliability of the solution can be im-
proved by adopting adaptive sampling. This is a topic
for future work. In fact, the SVM is most appropriate
for improving the sample set with data along the limit
state in the margin of the SVM. Some ideas of how
this can be done is outlined for the next example.

The second example is a most well-known bench-
mark with three constraints and reads















































min
µi

(µ1 + µ2)
2

s.t.



































Pr[g1 = 20−X2
1X2 ≤ 0] ≥ Φ(3),

Pr







g2 = 1−
(X1 +X2 − 5)2

30

−
(X1 −X2 − 12)2

120
≤ 0






≥ Φ(3),

Pr[g3 = X2
1 + 8X2 − 75 ≤ 0] ≥ Φ(3),

1 ≤ µi ≤ 7,

(35)

where VAR[Xi] = 0.32. A small modification of the
original problem is done by taking the square of the
objective function. This problem was recently consid-
ered in Strömberg (2017) by using a SORM-based
SQP approach for reliability based design optimiza-
tion. The example was in that work also generalized to
50 variables and 75 constraints for five different dis-
tributions simultaneously (normal, lognormal, Gum-
bel, gamma and Weibull). The analytical solution for
two variables with normal distribution is obtained to
be (3.4525,3.2758) with our RBDO algorithm.

In this work we consider (35) to be a “blackbox” for
which we setup a design of experiments using Ham-
mersley sampling with 100 points as shown in Fig-

ure 4. From this sampling we define a training setgtrain

for our support vector machine in the following man-
ner:

gtrain =

{

1 if any gi > 0,
−1 otherwise. (36)

For this training set, we obtain a SVMgsvm accord-
ing to Figure 4. The plot to the right clearly shows
that the the limit state functions are well represented
by the global SVMgsvm= 0. The corresponding clas-
sification of fail or safe using sign(gsvm) is given in
Figure 6. As in the previous example, we represent
the sampling data for the objective function with a
RBFN. Thus, our RBDO problem to be solved is this
RBFN-based objective function with the reliability
constraint on the SVM Pr[gsvm ≤ 0] ≥ Φ(3). In such
manner, we reduce the problem size from three con-
straints to a problem with only one constraint. For this
problem, the RBDO algorithm produces the follow-
ing solution: (3.4247,3.2218). The corresponding re-
liability indices for the two first active constraints are
2.84 and 2.87, respectively. Histograms for these con-
straints are given in Figure 5.
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Figure 7: SVM-based adaptive sampling augmented with deter-
ministic optimum and MPP.

Instead of solving (35) using a uniform sampling
as presented in Figure 4, we adopt a sequential adap-
tive sampling approach by distributing points in the
margin of the SVM along the limit states as well as
adding the deterministic optimum and the most prob-
able point obtained in each sequence. For instance, in
Figure 7, we start from a set of 50 Hammersley points
and then add 10 points (8 SVM-based points, 1 de-
terministic optimum, 1 MPP) sequentially five times
following this SVM-based sampling approach in or-
der to generate the set of 100 points shown in Fig-
ure 7. In this figure the corresponding SVM is also
plotted. Comparing the SVMs in Figure 4 and Fig-
ure 7, one can see that the latter one better capture
the local behavior of the limit surface close to the



optimal solution. The optimal solution for this SVM-
based formulation of the example is (3.4805,3.2585)
and the corresponding reliability indices are 3.08 and
2.95, respectively, for the two active constraints. This
is rather close to the target of 3. It is clear that this
is an improvement compared to the previous solution
presented above for the same example.

Finally, we solve (35) for all three constraints mod-
elled by three separate SVM models using the adap-
tive DoE used above. Then, we obtain the following
solution (3.4304,3.3053), and the corresponding relia-
bility indices for the active constraints: 2.97 and 3.12.

5 CONCLUDING REMARKS

In this work SVM-based RBDO is investigated by
implementing soft non-linear SVM together with
a SQP-based RBDO method recently developed in
Strömberg (2017). The implementation is done so far
for two random variables and the idea is to repre-
sent the limit state functions with a single SVM. It is
demonstrated that the proposed approach works well
for an established benchmark with three reliability
constraints. It is also demonstrated how the SVM can
be utilized in adaptive sampling. For future work it
would be interesting to investigate the approach for
more than two variables with several constraints.
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Amouzgar, K. & N. Strömberg (2017). Radial basis functions
as surrogate models with a priori bias in comparison with a
posteriori bias.Struct. Multidisc. Optim. 55, 1453–1469.

Basudhar, A., S. Missoum, & A. Sanchez (2008). Limit state
function identification using support vector machines for dis-
continous repsonses and disjoint failure domains.Probabilis-
tic Engineering Mechanics 23, 1–11.

Cortes, C. & V. Vapnik (1995). Support-vector networks.Ma-
chine Learning 20, 273–297.

Hamel, L. (2009).Knowledge Discovery with Support Vector
Machines. Hoboken, New Jersey: Wiley-Blackwell.

Hu, W., K. Choi, & H. Cho (2016). Reliability-based design op-
timization of wind turbine blades for fatigue life under dy-
namic wind load uncertainty.Struct. Multidisc. Optim. 54,
953–957.

Khatibinia, M., E. Salajegheh, J. Salajegheh, & M. Fadaee
(2013). Reliability-based design optimization of reinforced
concrete structures including soil-structure iteractionusing a
discrete gravitational search algorithm and a proposed meta-
model.Engineering Optimization 45, 1147–1165.

Li, H., A. Zhao, & K. Tee (2016). Structural reliability analy-
sis of multiple limit state functions using multi-input multi-
output support vector machine.Advances in Mechanical En-
gineering 8, 1–11.

Liu, X., W. Yizhong, B. Wang, J. Ding, & H. Jie (2017). An
adaptive local range sampling method for reliability-based
design optimizatio using support vector machine and kriging
model.Struct. Multidisc. Optim. 55, 2285–2304.

Lv, X., X. Gu, L. He, Z. D., & W. Liu (2015). Reliability de-
sign optimization of vehicle front-end structure for pedes-
trian lower extremity protection under multiple impact cases.
Thin-Walled Structures 94, 500–511.

Song, H., K. Choi, I. Lee, L. Zhao, & D. Lamb (2012).
Sampling-based rbdo using probabilistic sensitivity anal-

ysis and virtual support vector machine. InASME 2012
International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
IDETC/CIE, Chicago, Illinois, USA.
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Strömberg, N. (2017). Reliability-based design optimization us-
ing sorm and sqp.Struct. Multidisc. Optim. 56, 631–645.

Wang, Y., Y. Xiongqing, & D. Xiaoping (2015). Improved
reliability-based optimization with support vector machines
and its application in aircraft design.Mathematical Problems
in Engineering 2015, 1–14.

Yang, I.-T. & W. Husada (2017). Improving classification accu-
racy for single-loop reliability-based design optimization. In
IMECS 2017 the International MultiConference of Engineers
and Computer Scientists, Hong Kong.

Zhu, P., Y. Zhang, & G. Chen (2011). Metamodeling develop-
ment for reliability-based design optimization of automotive
body structure.Computers in Industry 62, 729–741.


