Simulating Residual Stresses in AM Mikael Schill ¹ , Niclas Strömberg ² ¹ Dynamore Nordic, mikael.schill@dynamore.se ² Örebro University, niclas.stromberg@oru.se	A Layer-by-Layer Approach for Simulating Residual Stresses in AM	
Mikael Schill ¹ , Niclas Strömberg ² ¹ Dynamore Nordic, mikael.schill@dynamore.se ² Örebro University, niclas.stromberg@oru.se		
 ¹ Dynamore Nordic, mikael.schill@dynamore.se ² Örebro University, niclas.stromberg@oru.se 	Mikael Schill ¹ , Niclas Strömberg ²	
	 ¹ Dynamore Nordic, mikael.schill@dynamore.se ² Örebro University, niclas.stromberg@oru.se 	

Outline	
 Background & motivation Pre-processor <i>Pre4AM</i> *LOAD_HEAT_GENERATION *MAT_CWM_THERMAL *Tangent expansion coefficient *MAT_CWM Examples Summary 	

The aim of this project is to	Thermal Solver	
develop a rational approach for	Implicit	
distortions and residual stresses	Double precision	
developed in additive	st dent se lenn ten the	
manufacturing (AM) of	Pisons outpender	
components using LS-Dyna. The		
approach must be easy to use in	Mechanical Solver	ver plicit
the design process and produces	Double precision / Displacement ALE / CP	SE M
results in a reasonable	Double preci	ision

承 Pre4AM	_ • •	
Model name	turbin.k	This GUI set up a LS-dyna simulation of residual stresses and distortions in AM.
Project Numer of layer	PROJ_TURBIN s 18 Level build plate 20	A model is loaded and three analyses are created in the following maps: BUILD, COO and CUT in the project map.
Build time Thermal steps	1000 Cool time 2000 Break time 2000 s per layer 50 Mechanical steps per layer 8 alvsis Inits mm Fraction beat (0.5-1.0) 0.7	dynain_build, dynain_cool, temp_build.inc and temp_cool.inc are used for the restart analyses.
Brick eleme Calibrate	ents Second order EXPORT PROJECT	The following sets are needed: a node set for build plate temperature, a node set for cut displacement BC and two segments sets for convection BC, one for building and cooling, and the other one for cutting.

$$\epsilon = \epsilon^{e} + \epsilon^{p} + \epsilon^{t} \qquad \dot{\epsilon}^{t} = \alpha(T)\dot{T}I$$

$$E(T) = E_{m}(T)\gamma + E_{g}(1-\gamma),$$

$$\nu(T) = \nu_{m}(T)\gamma + \nu_{g}(1-\gamma),$$

$$\alpha = \alpha(T) = \alpha_{m}(T)\gamma + \alpha_{g}(1-\gamma)$$

Tangent expansion coefficient

$$\alpha(T) = \frac{d\epsilon^t}{dT}$$
 $\epsilon^t = \hat{\alpha}(T)(T - T_0)I$
 $\dot{\epsilon}^t = \frac{d\hat{\alpha}(T)}{dT}\dot{T}(T - T_0)I + \hat{\alpha}(T)\dot{T}I$
 $\alpha(T) = \frac{d\hat{\alpha}(T)}{dT}(T - T_0)I + \hat{\alpha}(T)I$

$$\star \mathsf{MAT_CWM}$$

$$f = \sqrt{\frac{3}{2}(s - \eta) : (s - \eta)} - \sigma_y(T) - \beta H(T)\epsilon^p$$

$$\epsilon_{n+1}^p = \epsilon_n^p \max\left[0, \min(1, \frac{T - T_a^e}{T_a^s - T_a^e})\right],$$

$$\eta_{n+1}^p = \eta_n^p \max\left[0, \min(1, \frac{T - T_a^e}{T_a^s - T_a^e})\right]$$

Example – Pre4AM				
	Model name turbin k Project PROJ_TURBIN			
	Puild time 10 Cool time 200 Build time 1000 Cool time 2000 Thermal steps per layer 50 Mechanical steps per layer 8 Thermal analysis Viots mm Fraction heat (0.5-1.0) 0.7			
	Bick elements Second order Calibrate EXPORT PROJECT EXPORT PROJECT Calibrate EXPORT PROJECT Calibrate Calibrate Cali			
804 972 elements				

Summar	ТУ
 A layer-by layer approach for simulation of distortions and residual stresses developed in AM using *LOAD_HEAT_GENERATION, *MAT_CWM_THERMAL and *MAT_CWM is suggested. A first version of a pre-processor (Pre4AM) for setting up LS-Dyna simulations of proposed layer-by-layer approach is developed. Inconel 718 is implemented. Several examples are solved. The approach will be further developed within the project www.digi3d.org. 	