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Abstract-A model for mechanical contact including friction, wear and heat generation is proposed. 
By defining an internal state variable for the wear process, a generalized standard model for contact, 
friction and wear is derived from the principle of virtual power and the fundamental laws of 
thermodynamics. Within the frame of the generalized standard model some specific constitutive 
models are presented. For instance, a free energy corresponding to an extension of Signorini’s 
unilateral contact conditions to include the wear process at the interface and having a linear 
tangential compliance between the relative tangential displacement and the tangential contact 
traction is suggested. Furthermore, a dual pseudo-potential with a friction and wear limit criterion 
in agreement with Coulomb’s law of friction and Archard’s law of wear is given. In order to study 
existence and uniqueness questions, this pair of free energy and dual pseudo-potential is analysed 
in a one point elastic quasi-static contact problem with two degrees of freedom and thermal effects 
neglected. The so-called rate problem is solved. 

1. INTRODUCTION 

In this paper a continuum thermodynamic model for interfacial phenomena including 
contact, friction and wear is proposed. The framework is that of small displacements, 
implying small slip. Consequently, the model is mainly intended for studying fretting, a 
wear phenomenon arising when contacting surfaces undergo os&llatory displacements with 
small amplitudes. 

Following a li.ne of reasoning developing in works by Onsager (193 I), Ziegler (1958 ; 
1963), Coleman and No11 (1963), Moreau (1970; 1974), Halphen and Nguyen (1975), 
Nguyen (1977), Germain et al. (1983) and others, a method for deriving constitutive 
equations based on the concept of a generalized standard material is used. The method 
ensures satisfaction of the dissipation inequality by deriving the constitutive equations from 
a free energy potential and a dissipation potential. 

The first step of the method consists in using the method of virtual power and the 
fundamental principles of thermodynamics, coupled with an internal variable rep- 
resentation of the state, to derive state laws and a dissipation inequality. The form of the 
state laws and the dissipation inequality are specified by the choice of internal variables 
and the particular form of the free energy. 

The next step is to chose evolution laws for the internal variables, so-called comple- 
mentary constitutive laws. From the point of view of the basic principles of thermodynamics 
there is a lot of freedom in choosing these evolution laws. However, if one chooses to obey 
a maximum dissipation principle (Onsager, 1931; Ziegler, 1958 ; 1963), then the evolution 
laws are expressed by means of gradients of a function of rates of internal variables, a so- 
called dissipation potential, in the same way as the state laws follow from the free energy. 
The whole proble:m of specifying a constitutive law is now reduced to specifying two 
potentials-the free energy and the dissipation potential. A material obeying such a law is 
called a generalized standard material. 

It is important to recognize that due to the work of Moreau (1970 ; 1974), it is possible 
to include non-smooth phenomena like plasticity and friction within the class of generalized 
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standard materials, by taking the dissipation potential as convex, but not necessarily 
differentiable. Such non-differentiable potentials were called pseudo-potentials by Moreau. 

Another important observation is that it is admissible to include a dependence on the 
state in the dissipation potential [see for example Lemaitre and Chaboche (1990)], i.e. a 
family of potentials are considered. In this way it is possible to treat, within the concept of 
a generalized standard material, phenomena such as non-associated plasticity and friction 
with a non-constant normal force. In this respect see also Ziegler (1981). 

The above method for deriving constitutive relations was used by Fremond (1987 ; 
1988) to treat material surfaces and to formulate a theory of adhesion. He also extended 
the above theory in that non-smooth free energies as well as non-smooth dissipation 
potentials were used. The framework of Frtmond was utilized in Klarbring (1990a) to 
derive different models for frictional contact. In Johansson and Klarbring (1993) these 
ideas were extended to take into account frictional heat generation and heat transfer across 
the contact interface. The present paper is a further extension of this line of work where 
wear is treated in the same spirit. 

In this paper, two particular forms of the free energy and one specific dual pseudo- 
potential are suggested. The two free energies lead to an extension of the classical Signorini 
conditions of unilateral contact, taking the wear process at the interface into account. The 
second one also includes a linear tangential compliance between the relative tangential 
displacement and the tangential contact traction, which is an approximation of the non- 
linear behaviour observed from experiments (see, e.g. Wriggers et al., 1990). 

A dual pseudo-potential with a general friction and wear limit criterion is investigated, 
from which Coulomb’s law of friction and Archard’s law of wear are derived. When an 
elliptic norm is used in the friction and wear criterion, an anisotropic version of Archard’s 
wear law is derived, which is identical to the wear model proposed by Mroz and Stupkiewicz 
(1994) who assumed that the wear rate is proportional to the rate of the frictional dissi- 
pation. 

To gain understanding of the constitutive behaviour of the proposed free energies and 
the dual pseudo-potential corresponding to Coulomb’s law of friction and Archard’s law 
of wear, a one point contact problem with two degrees of freedom and thermal effects 
neglected is studied. The so-called rate problem is solved, i.e. when a contact state is known 
at a time t the change of the state due to the change of the external loads is determined. 
Existence and uniqueness of these solutions are discussed. The method of analysis follows 
Klarbring (1990b) [see also Martins et al. (1994)], where conditions for uniqueness and 
existence of solutions for a one point elastic contact problem with Signorini contact and 
Coulomb friction were established. Similar conditions are derived for the constitutive model 
in this paper. These conditions depend on the coefficient of friction, all stiffness coefficients, 
the contact force, the tangential compliance and the wear parameters. 

The contents of this study are as follows : in Section 2 the generalized standard model 
is derived from the principle of virtual power, the balance of energy and the second law of 
thermodynamics ; in Section 3 constitutive models for the interface, within the frame of the 
generalized standard model, are suggested and discussed ; in Section 4 conditions for 
uniqueness and existence of solutions to the rate problem are established ; and in Section 5 
concluding remarks are presented. 

2. DERIVATION OF A GENERAL MODEL 

Let the open disjoint regions Q’(/ = 1,2) c Wd(d = 2, 3) with piecewise smooth boun- 
daries aR’ be occupied by two continuous deformable bodies, see Fig. 1. Both bodies are 
subjected to body forces b, prescribed tractions t’ on I?: c aR’ and fixed displacements on 
rf, c aa’. The displacement field of the bodies is denoted by u. 

The material boundaries Ii c aR’ with outward unit normal vectors n; represent the 
potential contact surfaces. Since only problems with small displacements will be considered, 
the potential contact surfaces and the corresponding normal vectors have to be almost 
identical, i.e. Ii N I,’ and nf = -II,‘. This makes it possible to define a common contact 
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Fig. 1. The two bodies considered, defined by the regions Q’(f = L2) = L@(d = 2,3). 

surface f, N rJ =i l-f with outward unit normal vector n, II nJ II -nf, i.e. each particle 
on rJ is coupled with a particle on r,’ in a one-to-one correspondence. 

2.1. The method qf virtual power 
The method of virtual power, in the sense of Germain (1973), is used to derive the 

equilibrium equations and to identify the internal forces as the Cauchy stress and the 
contact traction vector. For any part 9 c R’ u Qz such that 89 n rj 1: 89 n r,‘, where N 
is in the sense in’dicated above, the virtual power of inertial forces balances the virtual 
power of all internal and external forces for any virtual velocity field 8. 

Restricting ourselves to quasi-static problems, the principle of virtual power reads, for 
L@ c 0’ u R* taken such that 89 n r,’ N 39 n rz, 

where V is the set of kinematically admissible virtual velocity fields. 
The virtual power of internal and external forces are defined as : 

where d and p are internal forces in the terminology of the method of virtual power, e is 
the infinitesimal strain tensor, v = L is the velocity field and w = u’ -II’ is the relative 
displacement vector between coupled particles on r,. A superimposed hat denotes a virtual 
quantity, a superimposed dot stands for right-hand time derivative, and : and * are the inner 
products between second-order tensors and vectors, respectively. Notice that all occurring 
time derivatives in the text are interpreted as right-hand derivatives. 

From eqn (l), the equilibrium equations and Cauchy’s theorem can be derived. The 
symmetry of the infinitesimal strain tensor e = sT implies that only the symmetric part of 
the internal force r~ gives a contribution to the virtual power. Therefore, u is considered to 
be symmetric. With suitable choices of ?, the following equations are obtained from eqn 
(1): 

diva+b = 0 in 9, (3) 

un=t on as-r,, (4) 

a’ni = -a*nz = -p on Bnr,, (5) 
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where u’ is the limit of tr when approaching I, from within $9 n a’ and n is the outward 
unit normal vector on 89 -I,. The symmetry of b, eqns (3) and (4) imply that d can be 
interpreted as the Cauchy stress and eqn (5) implies that p can be interpreted as the contact 
traction vector. 

2.2. The principles of thermodynamics 
In this subsection, the Clausius-Duhem inequalities for the bodies R’ and the material 

interface I, are derived from the first and second laws of thermodynamics by introducing 
the Helmholtz free energies. 

The two basic principles of thermodynamics are postulated as : 

where 8 is the internal energy, P, is the power of external forces obtained by evaluating 
eqn (2) for the real velocity, 9 is the heat supply per unit time, Y is the entropy, r is the 
internal heat production, q is the heat flux vector and T is the absolute temperature in the 
bodies R’. 

The internal energy 6, the entropy Y and the heat supply per unit time 9 are defined 
as: 

9= psdV+ 
s s 

SdA, 
D aPnrc 

9= rdV- 
s s 

q*ndA, 
a as-r, 

where e is the specific internal energy, s is the specific entropy, E is the surface density of 
internal energy on Tc and S the surface density of entropy on I,. 

Noting that 9 is arbitrary, it is possible to express the first and second laws of 
thermodynamics on local form as : 

pt = a:L+r-divq 

pS>k--div ; 
01 

in R’ v Q2, (6) 

where q’ and T’ (I = 1,2) are the limits of q and T, respectively, when approaching I, from 
within 9 n Sz’. 

Next, we introduce the Helmholtz free energies e, for the volume of bodies, and Y, 
for the area of the contact interface, as : 

$ = e-ST, \y = E-ST, (8) 

where 9 is the intrinsic temperature on I,. Moreover, the contact traction vector p and 
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the relative displacement vector w are decomposed into a normal component and a tan- 
gential vector as : 

where the normal vector nc was defined previously, I is the identity tensor and @ is the 
tensor product. 

By combining, eqns (6)-(8), the Clausius-Duhem inequalities for the bodies Q’ and the 
interface r, are obtained as : b i 

where 8’ = T’- F are the temperature differences between each body SJ’ and the interface 
I,. From here on, it is assumed that constitutive laws for the bodies a’, satisfying eqn (9), 
exist and our attention will instead be focussed on the Clausius-Duhem inequality for the 
interface given in eqn (10). 

2.3. A generalized standard model for the interface 
In this subsection, a generalized standard model for the interface which takes contact, 

friction, wear and thermal effects into account is derived. The generalized standard model 
is given by a class, of free energies and a class of dual pseudo-potentials from which the 
state laws and the complementary laws are defined. Using these constitutive laws we obtain 
a theory where all processes satisfy the reduced dissipation inequality [see, e.g. Lemaitre 
and Chaboche (1990) and Maugin (1992)]. 

The modelling of dissipative phenomena, such as friction and wear, may be achieved 
by the use of internal state variables. We will introduce two internal state variables denoted 
wi and ww. 

Firstly, following the ideas of Michalowski and Mroz (1978), Curnier (1984), Cheng 
and Kikuchi (198S), Klarbring (1990a) and others, the relative tangential displacement is 
decomposed into one reversible part and one irreversible part : 

WT = w;+w;. (11) 

The reversible part w+, sometimes called the adherence part, is due to the elastic defor- 
mations of the asperities, while the irreversible part w &, also called the slipping part, may 
be attributed partly to the plastic deformations of these asperities but is mainly to the 
rupture of the junctions between the asperities. This can be compared to the decomposition 
made in plasticity of the strain into one elastic part and one plastic part. 

Secondly, the wear process at the interface is modelled by the internal state variable 
ww. Wear is influenced by several interfacial phenomena on a micro-scale, depending on 
kinematics, material and geometry of the bodies and the environment. These interfacial 
phenomena are normally explained by four major wear mechanisms [see, e.g. Burwell 
(1958)], namely, adhesive, abrasive and corrosive wear and surface fatigue, but other minor 
mechanisms also exist [see, e.g. Suh (1973)]. Eventually, the result of the wear mechanisms 
can be identified on a macro-scale as wear debris. In our model, the wear is identified as an 
increase in the gap between the bodies, i.e. the internal state variable ww is interpreted as a 
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adhesive wear 

abrasive weax 

minor wear 
mechanisms 

Fig. 2. Interpretation of the internal state variable w’“. 

gap in the normal direction n, between the bodies owing to the wear mechanisms taking 
place at the interface, see Fig. 2. 

In our contribution Stromberg et al. (1995), we introduced one internal state variable 
for each wear mechanism. However, it turns out that for the particular free energies studied 
below only the sum of these state variables is of interest. Therefore, this setting is already 
used here at the outset. 

As a general constitutive assumption we consider the following class of free energies : 

Y = Y(WN, w;, ww, 5, e’, e*), (12) 

which is required to be convex with respect to (wN, w;, w’“) and differentiable with respect 
to (5, 8’, e’). 

Next, we define the following which will be identified as one part of the state laws : 

and 

_ a\y 
-S=p, -@l=$ (1= 1,2). (14) 

Here a\y denotes the subdifferential with respect to (wN, w;, w”‘), holding (,7,8’, 0’) fixed. 
Concerning concepts of convex analysis, such as the subdifferential, see Appendix A or, 
more fully, e.g. Hiriart-Urruty and Lemarechal (1993). 

The time rate of change of Y in eqn (12) at a time t is given by : 

\k = l im  ‘W+AO-‘W 
At-O+ At 

= lim Y[w&+At), w;(t+At), w”(t+At), S(t), O’(t), O’(t)] -Y(t) 
At-O+ At 

where Y(t) = Y[wN(t), w;(t), w”‘(t), T(t), O’(t), e*(t)]. A useful expression of eqn (15) is 
obtained by use of the convexity of Y. The definition of the subdifferential in eqn (13) 
implies that : 

Y[wN(t+At), w;(t+At), w”(t+At), F(t), O’(t), O’(t)] 2 Y(t) 
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where fiN, & and w belong to the subdifferential evaluated at time t. By dividing this 
inequality with a positive time increment At and letting At approach zero, one obtains from 
eqn (15) the following inequality : 

where eqn (14) also has been used. This together with the Clausius-Duhem inequality in 
eqn (10) and the dlecomposition in eqn (11) give : 

This inequality must hold for all admissible evolutions of the system. We assume that 
PN, pT and S are state functions, and from the definition in eqn (14) we know that 0” does 
not depend on 19” (m = 1,2). Furthermore, if one assumes that tiN, w.r, 9 and @” can take 
arbitrary values in any state, and that the evolution of the internal state variables does not 
depend on these values, then it follows from eqn (17) that the following must hold : 

w 
PN=PN, pT=fiT, S=$ (18) 

0” = 0 (m = 1,2) *y = y(wN, w$, ww, y), (19) 

and 

p,v4k’,+wv+~ - , 
2 4”d,,>o 

I=I T' 
. 

Johansson and Klarbring (1993) considered the case when the admissible values of tiN 
are depending on the state, which in fact is the case for Signorini-like contact conditions, 
and derived a more general law for PN compared to eqn (18). Also, in the case of rate 
independent behaviour of friction or plasticity type, the evolution of the internal state 
variables does actually depend on the rates of the observable variables. Nevertheless, eqns 
(18)-(20) are sufficient conditions for the inequality in eqn (17) to hold for such cases also, 
and are therefore assumed to hold in the following. 

The state laws are defined by eqns (13), (14) and (18). The left-hand side of the 
inequality in eqn (20) represents the dissipation at the interface. Furthermore, the associated 
force %‘-, defined in eqn (13), is identified in eqn (20) as the wear driving force for the wear 
process. 

In order to satisfy the dissipation inequality in eqn (20), we assume that a family of 
lower semi-continuous convex potentials exists @ = Q(p,, W, 01, O2 ; P), parametrized by 
9 = (PN, w;, w& bow, Y, T' , T2), from which the complementary laws are defined by : 

(21) 

and taken such tlrat : 

0 = aqo, 0, 0,o ; P), (0, 0, 0,O) E aaqo, 0, 0,o ; 5J). (22) 

In the terminology of Moreau (1974), Q, = @(pT, w, I?‘, e2 ; 9) is the dual, in the sense 
of convex analysis, of a pseudo-potential. The dissipation inequality in eqn (20) will always 
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be fulfilled by the complementary laws defined in eqn (21) provided eqn (22) holds, see 
Appendix A. 

The free energy in eqn (19) and the dual pseudo-potential defined above constitute, 
together with the state laws defined by eqns (13), (14) and (18) and the complementary 
laws in eqn (21), the generalized standard model for the interface. The model includes 
contact, friction, wear and thermal effects. 

3. CONSTITUTIVE MODELS FOR THE INTERFACE 

Signorini’s unilateral contact conditions and Coulomb’s law of friction are well-known 
constitutive models for contact and friction. We will extend these laws to take tangential 
compliance, wear and thermal effects at the contact interface into account. Within the 
frame of the generalized standard model, two specific free energies and one specific dual 
pseudo-potential with a general friction and wear limit criterion are proposed. 

3.1. Two specific free energies 
The first specific free energy is an extension of the free energy corresponding to 

Signorini’s unilateral contact conditions, to include wear and thermal effects. The internal 
variable ww is used to update the initial gap g between the bodies due to wear processes at 
the interface. Thus, we consider : 

Yl = ZC(WN, w”)+MG)- g (Y--2T,)2, (23) 
0 

where 

c= {(wN,ww):wN-ww-g GO} and D={w;:w;=O), 

and ZK denotes the indicator function of a set K, see Appendix A. The closed convex set C 
corresponds to an extension of Signorini’s unilateral contact conditions and the use of the 
closed convex set D is equivalent to an assumption of zero tangential reversible displace- 
ment. The free energy in eqn (23) is also given a thermal dependency : V is the heat capacity 
per unit area and To is a reference temperature. 

The second form of the free energy which is considered includes tangential compliance 
at the interface. We modify Y, so as to read : 

Y* = ZC(WN, W”)+fkTIW;12 - 2yo -q9--Fo)2, 

where a simple constitutive assumption of a linear elastic behaviour between pT and w; has 
been added [see, e.g. Wriggers et al. (l%%)]. kT is a constant material parameter representing 
the tangential stiffness of the asperities and 1.1 is the Euclidean norm. A physically more 
realistic assumption would be that kr depends on the contact pressure. This was assumed 
in Klarbring (1990a). 

Let us derive the state laws implied by Y, and Y2 explicitly, knowing that the sub- 
differential of an indicator function of a closed convex set is equal to the normal cone of 
this set, see Appendix A. Inserting eqns (23) and (24) in eqns (13), (14) and (18) gives : 

w =pN 2 0, wN-ww-g < 0, pN(WN-WW-g) = 0, (25) 

PTEg2 and w$=O for Y=Y,, (26) 

PT =kTW;+W$ =kF1pT = CTPT for Y =Yz, (27) 
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s = $(F-6,). (28) 
0 

Note that the wear driving force W is always equal to the contact pressure pN for these free 
energies. Also note that ‘I!, and Y1 only differ in that Yz implies a tangential compliance at 
the contact interface, see eqns (26) and (27). 

The change in internal energy eqn (7) can be expressed by use of these state laws. 
Equations (7) and (8) and (23)-(28) give in case of Y, that : 

and in case of Y2 that : 

B=;-y@fkTW;*tiT =pN~W+kTW;.~T+kTw~.~;+~q,.n~. 
0 I= 1 

(30) 

Obviously, eqns (2~9) and (30) serve as evolution laws for the intrinsic temperature at the 
interface. 

3.2. A speciJic dual pseudo-potential 
A dual pseudo-potential with a general friction and wear limit criterion, and a thermal 

dependency similar to Fourier’s heat diffusion law for solid bodies are suggested and 
investigated. The proposal is : 

(31) 

where 

is a closed convex set, F(pT, W ; 9’) is a quasi-convex function describing the friction and 
wear limit criterion, as well as the sliding rule and the wear law, and 9’ = $‘(%) is thermal 
contact conductances. Concerning more explicit relations for thermal contact conductances 
[see, e.g. Fried (1969)]. 

The complem’entary laws (21) are expressed with eqn (3 1) as : 

q’-nf = 9’8’(1= 1,2), (33) 

where NFcPj denotes the normal cone of the set F(P). Here eqn (32) defines the friction 
and wear laws, and (33) is the equation governing the heat flow across the contact interface. 
If %(pr, W; 9) is differentiable with respect to pT and W, then we obtain from eqn (32) : 

Several choices of %(pT, W ; 9) are possible. A simple constitutive assumption of a 
friction and wear model is an extension of Coulomb’s friction cone. Let : 
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(35) 

where k is a wear coefficient, then the wear law in eqn (34) becomes : 

(36) 

Thus, the wear rate is proportional to the sliding velocity and the contact pressure, which 
is in agreement with experiments [see, e.g. Rabinowicz (1965)]. A similar friction and wear 
limit criterion as in eqn (35) was suggested by Curnier (1984), with kp,W replaced with a 
force of wear associated to a cumulated slip. 

By choosing k = ka/3ps where k, is a wear constant that Archard (1953) interpreted as 
the probability that a fragment will be formed at an adhesive joint and ps is the penetration 
hardness of the softer material, we achieve a local form of Archard’s wear law? from eqn 
(36) i.e. 

(37) 

As we have already seen for Y, in eqn (23) and YZ in eqn (24), the wear driving force 
w is equal to the normal contact pressure pN for some specific classes of free energies. In 
such cases the softening of the Coulomb friction criterion induced by using eqn (35) can be 
removed by taking : 

(38) 

which does not affect the form of Archard’s law of wear given in eqn (37). The friction and 
wear criterion in eqn (35) is discussed in Section 3.3., and the criterion in eqn (38) is 
analysed in Section 4. 

Let us change the Euclidean norm used in eqns (35) and (38) to an elliptic norm. Let 
the rectangular coordinate system x and y specify the tangential plane normal to II,, and let 
pTx and pTr be the components of pT in this coordinate system. Then a change of the 
Euclidean norm in eqns (35) and (38) to : 

(39) 

takes anisotropic effects of the surfaces into consideration. The principle axes of the ellipse 
(a, cry) account for the existence of preferred directions of slip at the contact interface. 
Anisotropic friction conditions have been studied by Curnier (1984), Michalowski and 
Mroz (1978), He and Curnier (1993), and others. 

With the elliptic norm (39) in eqns (35) and (38), we obtain an anisotropic version of 
Archard’s wear law from eqn (34), i.e. 

(40) 

Thus, the wear rate will vary with the orientation of the sliding velocity vector. Such 
correlations between friction and wear have been reported by Jacobs et al. (1990), Miyoshi 
and Buckley (1982), and others. Moreover, an elliptic norm is physically reasonable when 
considering wear processes, as wear may induce anisotropic roughness at the surfaces. One 

t In our contribution (Str0mberg et al., 1995), Coulomb’s friction cone was extended with kaW2/6p, leading 
to Archard’s wear law when W = pN > 0. Unfortunately, this extension implies that the wear rate can take 
arbitrary values when pN = 0, which is not in agreement with physical intuition. 
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may think of a situation when tlX and tlY depend on some cumulated wear in each of the 
principle directions x and y of the interface. 

Anisotropic wear models were investigated by Mroz and Stupkiewicz (1994). They 
assumed that the wear rate is proportional to the frictional dissipation. With our notations 
this reads for the elliptic norm (39) 

where k,,., is a wear constant. This law is similar to the wear law derived in eqn (40) as jlpTll 
is closely related to PN. For instance, if one assumes that llprll = ppN when friction is 
developed, then eqn (40) can be obtained from eqn (41) by replacing kM with k,/3psp. 

However, in our model the wear process is a part of the dissipation and the change in 
internal energy. For the friction and wear limit criterion in eqn (38) corresponding to 
Coulomb’s law of friction and Archard’s law of wear, the dissipation inequality (20) 
becomes with w =: PN : 

(42) 

Here the relations in eqn (33) have also been used. The change in internal energy for Y, in 
eqn (29) can be reformulated to : 

(43) 

It can be seen that the change in internal energy is almost identical to the dissipation in eqn 
(42). The change in. internal energy for Y2 in eqn (30) is almost identical to eqn (43) except 
for the additional term k,w+ SW;. 

3.3. Discussion of the friction criteria 
By choosing the function 9(pT, W ; 9) as in eqn (35) we obtain Archard’s law of wear 

(37), [see also Holrn (1946)], and the friction law: 

A 2 O, 
k,P,w 

IhI-ppN+ ~ 
3Ps 

< 0, IpTI-ppN+- 

(44) 

which is a slight modification of Coulomb’s law of friction. Note that %” = pN for the 
particular choices of the Helmholtz free energy of the contact interface made in this paper. 

By modifying F@=, w; 9) to the form in eqn (38) it is possible to obtain Archard’s 
law of wear and Coulomb’s law of friction, within the presented thermodynamical frame- 
work. This is tempting since these are accepted first approximations of wear and friction 
models, which have stood the test of time. We believe, however, that there are reasons to 
tentatively retain F(pT, W;B) in the form of eqn (35), and thus to consider the friction 
law (44). These reasons are in short : 

Taking F(pT, W; 9’) in the form of eqn (35) is the simplest extension of Coulomb’s 
friction criteria ‘we have found that serves the purpose of incorporating Archard’s law 
of wear within our thermodynamical framework. The resulting friction law differs from 
Coulomb’s law, but for practical purposes, with k, c p, the difference is unimportant. 
Nevertheless, taking 9(pT, W; 9)‘) in the form of eqn (35) does introduce a difference 
from the classical Coulomb’s law. However, we believe that the corresponding friction 
law (44) is acceptable from an experimental and intuitive point of view. 
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To expand on point 2 above, we note that if W = PN, which is obtained for the choices 
of Y considered in this paper, we obtain the friction criterion : 

The validity of Coulomb’s criteria lpTl < &?LpN as a first approximation is well verified 
experimentally, but experiments also show a dependency of the friction coefficient on a 
number of parameters, and a decrease of the friction coefficient with increasing pressure, 
as predicted by eqn (45), is sometimes observed [see, e.g. Suh (1982)]. 

To defend eqn (45) from an intuitive point of view, we note that Archard’s wear law 
has been interpreted using an adhesive model involving formation and breaking of adhesive 
joints between asperities [see Archard, (1953) ; Rabinowicz, (1965)]. This is shown in Fig. 
3. In this wear model the wear constant k, is interpreted as the probability that an adhesive 
joint will break somewhere else than where it was formed, and later break along the path 
where it was formed, i.e. a loose wear particle is formed. Rabinowicz (1965) explains the 
second stage in the formation of wear fragments with a model involving elastic strain energy 
in the fragment. 

If we assume that the reason that a joint breaks along an alternative path is that a 
path exists where the joint is weaker than along the path where it was formed, it is reasonable 
to expect a reduction in the friction force proportional to k,. This is the behaviour predicted 
by eqn (45). 

To further exploit the adhesive model we note that since, obviously, JpTJ > 0, it is 
necessary to impose the following condition on eqn (45) : 

In most applications we have k, +K p, in which case this condition is fulfilled. However, 
interpreting k, as probability, it could, at worst, be equal to 1. Further, in an adhesive 

(46) 

friction model, the coefficient of friction equals the ratio between the shear flow stress and 
the normal flow pressure, i.e. p = z,/p,. A simple assumption is to put z, = a,,/2 andp, = 3a,, 
where aY is the plastic yield strength in uniaxial compression, to give p = l/6. More realistic 
assumptions, however, must recognize the fact that the normal flow pressure is reduced 
when tangential tractions are present in addition to the normal pressure, due to the coupling 
between the stress components in a plastic yield criterion. If we put k, = 1 and p = l/3 in 
eqn (46) we obtain : 

1 FN 
FT 

alternative break 
path, resulting 

between asperities 

Fig. 3. Two interacting surface asperities. 
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which is a condition that must be made in an adhesive friction model anyway, as pN = ps 
when the true contact area becomes equal to the apparent area. Thus, it is seen that the 
condition lprl 2 0,, which must be imposed on eqn (45) fits into an interpretation in terms 
of an adhesive friction model. 

4. A ONE POINT ELASTIC CONTACT PROBLEM 

In this section, a contact problem involving one contact point with two degrees of 
freedom and thermal effects neglected is considered. The so-called rate problem is solved, 
i.e. for a given state of contact and a given rate of change of the external loading, the rate 
of change of the state is determined. This problem is solved for the free energy (24) 
corresponding to Signorini contact with tangential compliance and the dual pseudo-poten- 
tial (31) with the friction and wear limit criterion (38) equivalent to Coulomb’s law of 
friction and Archard’s law of wear. Existence and uniqueness of the solutions are discussed. 
The same problem for Signorini contact with Coulomb friction was considered by Klarbring 
(1990a). 

4.1. The model, the state laws and the complementary laws 
Let us consider a class of one point contact problems where the external forces (&, &), 

the contact forces (PT, pN) and the relative displacements (wT, wN), see Fig. 4, are related 
by: 

(47) 

where the matrix : 

is positive definite. 
As only one point is considered the contact forces above take the place of the tractions 

used before. Moreover, with two degrees of freedom, thermal effects neglected and the 
initial gap g taken to be equal to zero, the state laws corresponding to Yz in eqns (25) and 
(27) can be written as : 

‘N 2 0, wN-ww < 0, &.&N -Ww) = 0, w; = c,p, 

and the complementary laws in eqn (32) corresponding to 9(PT, W ; 9) in eqn (38) can be 
written as : 

WN 

L WT 

point elastic contact problem. 
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if PN > 0, and: 

a;cEa, ti” = 0 if PN =O. 

Here c, and ps have been replaced by C, and P,. 
In the following analysis, the result for Signorini contact without reversible tangential 

displacement is simply achieved by letting C, + 0, and the result for Coulomb friction 
without wear by letting k, + 0. 

4.2. The contact states and the rate laws 
The state of contact is given by (wN, w”‘, WT, PN, PT). In each particular state of contact, 

conditions on the rate of change of the state are determined by the so-called rate laws. 
These can be derived by making a Taylor expansion in time of the state laws in eqn (48) 
and the complementary laws in eqn (49), and then evaluate these expansions for each 
particular contact state. The Taylor expansions of eqns (48) and (49) can be found in 
Appendix B. For each particular state, the following rate laws are derived : 

a. If PT = PN = 0 and wN-ww c 0, then 

b. If&=PN=O and wN-w’“=O, then 

c. If IPTl < ,&, PN > 

tiN < 0, PNtipq = 0, ti”’ = W$ = 0, ti; = CTPT, 

IpTl < /&4, PT = @N sgn (tik) if tik # 0. 

0 and wN- w”’ = 0, then 

d. If I PTI = pPN, PN > 0 and wN- ww = 0, then 

& = g’ = khlG 
3P, ’ 

tii = I&l sgn (PT), W; = CTPT, W; = CTPT. 

4.3. The rate problem 
For a given state and change in external loading, the rate problem is to find the rate 

of change of state. This can be found by using the rate form of eqn (47) : 

(50) 

together with the rate laws given in Section 4.2. For each contact state, a-d, the rate of 
change of state depending on the rate of change in external loading are obtained and 
summarized below together with comments and illustrations. 

a. The rate of change of the state is (with & = rj, = ti; = 0) 
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b. Three different types of solutions are found-separation, stick and slip. The con- 
ditions on the rates of the external forces are for : 

i. separation (i.e. GN < 0, PN = PT = ti$ = 0) : 

ii. stick (i.e. tiN = 0, pN 2 0, W; = 0 and ti; = C,#,) : 

iii. slip (i.e. tiN = IV” = 0, p, > 0, tii # 0 and ti; = C,p,) : 

In this contact state there exist solutions for all loading directions but they may be 
non-unique, which can be seen if one compares the inequalities in b.i-b.iii, defining the 
solution to be separation, stick and/or slip. The uniqueness depends on the sign of the 
denominator in b.iii, i.e. a,, -pal2 sgn (&). 

If al 1 > plalzl, then the denominator is greater than zero for both positive and negative 
slip, and unique solutions exist for all loading directions. This is illustrated in Fig. 5(a) for 
the case when a, 2 :> 0. On the other hand, if a,, < pla,21, then the denominator is negative 
for positive slip (or negative slip) when a, 2 > 0 (or aI2 < 0), and non-unique solutions may 
appear. This is shown in Fig. 5(b) for the case when a 12 > 0. Finally, if a, 1 = ,ula,,j, then 
the denominator is equal to zero for positive or negative slip, depending on the sign of a, 2, 

and the numerator:s in b.iii must then be equal to zero. In such cases, one finds non-unique 
solutions identified as stick and slip for loading directions defined by the first and second 
numerators in b.iii. 

In conclusion, it exists solutions for all loading directions, but for : 

non-uniqueness of solutions may appear. Furthermore, the value of C, has no influence on 

FN 

Fig. 5. Intermediate contact state (b). Different solutions depending on loading directions when 
aI2 > 0: (a) P <a,&,,; 0) I” > a,,la,, . 

us 33:13-R 
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this condition for existence and uniqueness of solutions, but it affects the size of the domains 
of stick and slip solutions. In the limit C, + 0, we obtain the domain of solutions for 
Signorini contact with Coulomb friction. 

c. In this contact state unique solutions exist for all loading directions. The solutions 
are (with tiN = tik = 0 and ti; = C,P,) 

I$ = G p = (1+4,GPN-~,,G& 
l+a,,C,’ N 1+a,,c, . 

Although there is no slip and consequently no wear in this contact state, there can still 
be a change in the relative tangential displacement between the bodies. In fretting situations, 
a threshold has been observed on the amplitude of the tangential displacement below which 
no wear is developed (see e.g. Waterhouse, 1984). Thus this wear model is in agreement 
with such observations, if one assumes that the threshold can be explained by the elastic 
response of the asperities. 

d. Two different types of solutions are identified-stick and slip. We get the following 
conditions on the rates of the external forces for : 

i. stick (i.e. tik = 0, tiN = 0 and ti; = C,P,) : 

ii. slip (i.e. ti+ # 0, tiN = kzPNb%~ 
3P, 

and ti+ = C,P,) : 

bgn VT) +P~~~GI~~ > 141 +a1 I GPN if A > 0, 

[sgn(P,)+pu12CT]& = CL(~+U~,C~)P’, if A = 0, 

[sgn(P,)+p~,~G]P~ < ~(l+ul,CT)& if A < 0, 

where 

k,PN 
A = alI -~a12sgn(P,)+jp(n,2sgn(P,)-~a22)-pC, 

k,p, 
3p (a,,a2242). (51) 

s s 

In this contact state existence and uniqueness of solutions are depending on the sign 
of A in eqn (51). This can be seen if one compares the inequalities in d.i and d.ii, defining 
the solution to be stick and/or slip. If A > 0, then there exist unique solutions for all loading 
directions. Otherwise, i.e. A < 0, there are two solutions, one solution or no solution for 
different loading directions. 

The expressions of A in eqn (51) depend on several parameters. Let us study this 
expression for some special cases by letting k, and C, approach zero. 

Firstly, if C, # 0 and k, + 0, then we get the same condition on uniqueness and 
existence of solutions as for Signorini contact with Coulomb friction, i.e. eqn (51) becomes : 

AC = 0, L -w2 w (&I. 

For sufficiently small friction coefficients ,A, is greater than zero and unique solutions exist 
for all loading directions. On the other hand, if 

then non-uniqueness and non-existence of solutions appear for positive slip (or negative 
slip) if aI2 > 0 (or Q,~ < 0). Furthermore, the tangential compliance has no effect on the 
condition of uniqueness and existence of solutions for Signorini contact with Coulomb 
friction, but the domains of stick and slip solutions are changed. 
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Secondly, if k, # 0 and C, + 0, then we get from eqn (51) that : 
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which gives the condition on uniqueness and existence of solutions for Signorini contact 
with Coulomb friction and Archard’s law of wear. Compared to AC, Aa also depends on 
k,, PN, P, and u22. For a sufficiently large contact force, non-uniqueness and non-existence 
can appear for both positive and negative slip, and not only for positive slip or negative 
slip as in the previous case, depending on the sign of a,,. 

Finally, if k, :f 0 and CT # 0, then the range of uniqueness and existence of solutions 
is decreased further compared to the two previous cases, because det [A] = a, lu22 
--af2 > 0 in eqn (.51). 

5. CONCLUDING REMARKS 

In Section 2 a generalized standard model for fretting is derived from the principle of 
virtual power, the balance of energy and the second law of thermodynamics. The model is 
defined by a free energy and a dual pseudo-potential. A certain internal state variable is 
introduced to model the wear process at the interface. It is interpreted as a normal gap 
between the bodies owing to wear. In a similar way other internal state variables may be 
defined to model other interfacial phenomena. 

One may notice that it is necessary to treat the thermal model as a three-body model 
to include heat transfer across the contact interface. Otherwise, the temperatures of the 
contact surfaces must be equal. In the authors’ opinion, an important extension of the 
model presented in this paper should be to formulate a complete three-body model, within 
the framework of continuum thermodynamics, which includes both thermal and mechanical 
effects. 

In Section 3 some specific forms of the generalized standard model are suggested. For 
instance, a free energy corresponding to an extension of Signorini’s unilateral contact 
conditions accounting for wear processes at the interface and having a linear tangential 
compliance between the tangential displacement and the tangential contact traction is 
suggested. Moreover, a dual pseudo-potential with a friction and wear limit criterion 
equivalent to Coulomb’s law of friction and Archard’s law of wear is given. Other friction 
and wear criteria are also discussed. 

The extension of Signorini’s unilateral contact conditions is obtained by use of the 
internal state variable defined for the wear process. A contact law with normal compliance 
can be extended in a similar way. This type of extensions belongs to a class of free energies 
where the wear driving force is equal to the contact pressure. Specific forms of other classes 
of free energies have not been considered in this work. 

In Section 4 the specific free energy and dual pseudo-potential mentioned above are 
analysed for a one point elastic contact problem, where the so-called rate problem is solved. 
In the intermediate contact state, i.e. when both the contact force and the gap are equal to 
zero, it is shown that solutions exist for all loading directions, but they may be non- 
unique. The uniqueness depends on ~1, a,, and u,~. Moreover, no wear is developed in the 
intermediate contact state. Wear is only developed in the contact state with positive or 
negative slip and the contact pressure greater than zero. In this contact state, it is seen that 
non-uniqueness and non-existence of solutions may appear, depending on ~1, a, ,, u12, uz2, 
CT, k,, P, and PN. In the other contact states there always exists a unique solution for all 
loading directions. 
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Definitions 

APPENDIX A. BASIC CONVEX ANALYSIS 

1. A function f: &” -t W u { + co}, not identical to + co, is said to be convex when, for all (x,x’) E 41” x .@’ 
and all a E [0, 11, there holds : 

f(ax+(l-cc)x’) < af(x)+(l-av(x’) 

2. AsetKc~issaidtobeconoexifcuc+(l-a)x’EKwhenever(x,x’)EKxKandaE[O,l]. 
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3. The indicatorjrnction &: 41” -+ W u { + co} for a non-empty set K c 41” is defined by : 

0 I ifxoK 
I.&) = 

cc otherwise. 

4. The subdifferential offat x is the set defined by : 

af(x) = {S :f(x’) >f(x) + (s-, x’-X)VX’E9F}, 
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(52) 

where (.;) is a scalar jproduct on 9I’“. 
5. The normal cone NK of a closed convex set K is defined by : 

Propositions 

NK(x) = (3: (T-,x’-x) < OVX’EK}. 

1. If K is closed and convex, then : 

az,(x) = 
I 

NK(x) if x E K 

0 otherwise. 

2. If: 

K = {x:g(x) < 0}, 

with g given as a convex differentiable function, and some constraints qualifications are satisfied, then an element 
of NR(x) can be expressed as : 

.!!Z = nvg, a > 0, g(x) c 0, Ag(x) = 0. 

3. If % E af(x), 0 = f(0) and 0 E af(O) then : 

e-,x)>0 

for all x E %‘. This can be seen from eqn (52) by first taking x’ = 0 and x = x : 

0 =f(O) >f(x)+@-,0-x) 

and then taking x’ = x and x = 0 : 

This together forms : 

f(x) a 0+(0,x-o) = 0. 

which implies the above statement. 

For a full presentation of convex analysis see Hiriart-Urruty and Lemarechal (1993). 

APPENDIX B. TAYLOR EXPANSIONS OF THE STATE LAWS AND THE 
COMPLEMENTARY LAWS 

The rate laws in Section 4.2 are derived by making a Taylor expansion in a time increment At of the state 
laws in eqn (48) and the complementary laws in eqn (49), and then for each particular contact state letting At 
approach zero. The Taylor expansions of interest are presented in this appendix. 

The Taylor expansions of eqn (48) are : 

PN(t+At) = P,(t)+At&(t)+@I(At*) > 0, 

w,(t+At)-w”(t+At) = wN(t)-w’“(t)+At[q.+(t)-“L’“(t)]+O(At*) C 0, 

P,(t+At)[w,(t+At)-w’“(t+At)] = P&t)[w&)-ww(t)] 

+A.t{P,(t)[~~(t)-tL”(t)]+~,(t)[w,(t)-ww(t)]}+At2{~PN(t)[~ijN(t)-~~(t)] 

+;&(t)[w,(t)-w’“(t)]+&q(t)[ti,q(t)-9’(t)]}+U(At’) = 0, 



1836 N. Stramberg et al. 

w;(t+At) = w~(t)+At~~(t)+O(Atz) = CTPT(f)+AtCT~~(z)+~(ArZ), 

The Taylor expansions of eqn (49) are : 

vb+(t+At) = k;(t)+U(Ac) = [i(t)+@(Ar)] PT(t) +A@,@) +U(At2) 

IP~(t)+Af~~(~)+~(Af2)1 ’ 

IJ’dt+Ar)l-&.&+A4 = I~~(r)l-~P~(f)+At{sgn[P,(t)l~~(t)-11P~(t)}+O(Ar*) Q 0, 

~(~+AW’d~+A~)l -i&(f+Af)l = ~(NlM~)l -~&(t)l 

+A&){w PW)l~df) -.&,@)I +~(9[lMOl-&.d91) +Wt*) = 0. 

If P=(t) = 0, then sgn [PT(t)]pT(f) is changed to /p,(t)1 in the expressions above. 


