Automatic Postprocessing of Topology Optimization Solutions by using Support Vector Machines

DETC2018-85051

ASME IDETC/CIE 2018, August 26–29, 2018, Quebec City, Canada

Niclas Strömberg, Ph.D., Docent
Örebro University
niclas.stromberg@oru.se

Outline

• Background & motivation
• Support vector machines
• SVM as metamodels – previous work
• SVM-based postprocessing approach
• In-house toolbox TopoBox
• 2D and 3D examples
• Summary & concluding remarks
Topology optimization of a cutting tool

SVM-based postprocessing
Support vector machines

\[w \cdot x + b = 0 \]

\[
\begin{aligned}
\min_{(w,b)} & \frac{1}{2}\|w\|^2 \\
\text{s.t.} & 1 - y^i (w \cdot x^i + b) \leq 0
\end{aligned}
\]

The kernel trick

\[
\begin{aligned}
\min_{\lambda} & \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y^i y^j x^i \cdot x^j - \sum_{i=1}^{N} \lambda_i \\
\text{s.t.} & \sum_{i=1}^{N} \lambda_i y^i = 0, \\
& \lambda_i \geq 0, \quad i = 1, \ldots, N.
\end{aligned}
\]

\[
\begin{aligned}
\min_{\lambda} & \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y^i y^j k(x^i, x^j) - \sum_{i=1}^{N} \lambda_i \\
\text{s.t.} & \sum_{i=1}^{N} \lambda_i y^i = 0, \\
& 0 \leq \lambda_i \leq C, \quad i = 1, \ldots, N.
\end{aligned}
\]
Examples – 2D and 3D dart boards

![2D and 3D dart boards](image)

Metabox 1.5

<table>
<thead>
<tr>
<th>Design of experiments</th>
<th>Metamodels</th>
<th>Solvers</th>
<th>Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Linear Koshal</td>
<td>• A priori RBN with LRM</td>
<td>• RBDO with SLP</td>
<td>• Normal</td>
</tr>
<tr>
<td>• Full factorial</td>
<td>• A priori RBN with QRM</td>
<td>• RBDO with SQP</td>
<td>• Lognormal</td>
</tr>
<tr>
<td>• Face centered cubic</td>
<td>• A posteriori RBFN with LRM</td>
<td>• FORM based RBDO</td>
<td>• Gumbel</td>
</tr>
<tr>
<td>• Symmetrical Koshal</td>
<td>• A posteriori RBFN with QRM</td>
<td>• SORM based RBDO</td>
<td>• Gamma</td>
</tr>
<tr>
<td>• Quadratic Koshal</td>
<td>• Analytical model</td>
<td>• Crude Monte Carlo</td>
<td>• Weibull</td>
</tr>
<tr>
<td>• Spherical</td>
<td>• Hybrid model of analytical model and RBFN</td>
<td>• Quasi-Monte Carlo</td>
<td>•</td>
</tr>
<tr>
<td>• Box-Behnken</td>
<td>• Polynomial chaos expansion</td>
<td>• Importance sampling</td>
<td>•</td>
</tr>
<tr>
<td>• S-optimal</td>
<td>• Support vector machines</td>
<td>• Multi-classification</td>
<td>•</td>
</tr>
<tr>
<td>• Latin hypercube sampling</td>
<td>• Support vector regression</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>• Halton sampling</td>
<td>• Least square SVM & SVR</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>• Hammersley sampling</td>
<td>• Optimal ensemble</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metamodels</th>
<th>Solvers</th>
<th>Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Linear regression</td>
<td>• Genetic algorithm</td>
<td>• Normal</td>
</tr>
<tr>
<td>• Quadratic regression</td>
<td>• SLP</td>
<td>• Lognormal</td>
</tr>
<tr>
<td>• QPRM</td>
<td>• SQP</td>
<td>• Gumbel</td>
</tr>
<tr>
<td>• Kriging with LRM</td>
<td>• Succesive response surface methodology</td>
<td>• Gamma</td>
</tr>
<tr>
<td>• Kriging with QRM</td>
<td>• Newton’s method</td>
<td>• Weibull</td>
</tr>
</tbody>
</table>
SVM-based limit surface

\[g_{\text{train}}^{\text{min}} = \begin{cases}
1 & \text{if } g_i > 0, \\
-1 & \text{otherwise.}
\end{cases} \]

SVM-based approach
TopoBox - inhouse toolbox

Maximizing potential energy

\[\Pi(\rho, d) = \frac{1}{2} d^T K(\rho) d - F^T d. \]

\[\begin{align*}
\min_{d} & \quad \Pi(\hat{\rho}, d) \\
\text{s.t.} & \quad C_S d + C_M d - g \leq 0.
\end{align*} \]

Topology optimization with contact constraints

Trade-off curve
Michell’s benchmark

SVM-based postprocessing
Topology optimization of a stamping die

3D benchmark

TO
SVM
3D benchmark

SVM parameters
An automatic postprocessing approach of TO solutions is suggested by using SVM.

The approach is implemented in our in-house toolbox TopoBox.

The approach is implemented for both 2D and 3D geometries.

It is demonstrated that proper stl-files are generated which then are 3D printed.