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ABSTRACT

The postprocessing step from the density result in topology
optimization to a parametric CAD model is typically mostdim
consuming and usually involves several hands on maneuyers b
an engineer. In this paper we propose an approach in order to
automate this step by using soft non-linear support vectar m
chines (SVM). Our idea is to generate the boundaries sejayat
regions of material (elements with densities equal to ome) a
no material (elements with densities equal zero) obtaimeah f
topology optimization automatically by using SVM. The ype
surface of the SVM can then in the long run be explicitly imple
mented in any CAD software. In this work we generate these
hypersurfaces by solving the dual formulation of the SVM wit
soft penalization and nonlinear kernel functions usingdradic
programming or the sequential minimal optimization apmioa
The proposed SVM-based postprocessing approach is stadied
topology optimization results of orthotropic elastic dgsido-
mains with mortar contact conditions studied most receintly
previous work. The potential energy of several bodies wath-n
matching meshes is maximized. In such manner no extra adjoin
equationis needed. Intermediate density values are reathlis-
ing SIMP or RAMP, and the regularization is obtained by apply
ing sensitivity or density lters following the approachefSig-

INTRODUCTION

Today, topology optimization is a standard tool in product
development [1]. In particular, the problem of minimizatiof
compliance for a prescribed volume fraction is most esshbli.
But still the transfer of the optimal solution of element dien
ties to a parametric CAD geometry is time consuming. In this
work, we propose a postprocessing approach of the topolog
optimization solution by adopting soft non-linear suppast-
tor machines. The soft non-linear support vector machire in
troduced by Cortes and Vapnik [2] de nes a paradigm shift in
machine learning and the paper has been cited more than 150
times. By adopting the kernel trick and the soft penalizgtio
we are able to classify non-linear separable data includiisy
classi ed data points. In this work, we suggest to use thé sof
non-linear SVM to classify the optimal element densitie® in
a material and non-material geometry description with sfmoo
separating boundaries which can be used to set up the CAD g
ometry as shown in Figure 1. In the long run the optimal suppor
vectors could be integrated into the CAD software directlpii-
der to support an automatic postprocessing process ofdgpol
optimization solutions. A similar approach for level-&etsed
topology optimization was presented recently by Chu et3l. [
Examples of other approaches for interpretation of topptyji-
mization solutions can be found in e.g. [4-9]. For readetgao
miliar with SVM, an excellent introduction to this machirealn-

mund and Bourdin. The study demonstrates that the SVM-baseding discipline is found in the textbook by Hamel [10]. Fordeas

postprocessing approach automatically generates propeeh
surfaces which can be used ef ciently in the CAD modelling.

not familiar with topology optimization we suggest the etk
by Bendsg and Sigmund [11].
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Figure 1. Automatic postprocessing of topology optimization solutising support vector machines.

In a standard formulation of topology optimization, such as
the SIMP or RAMP model, each elements equipped with a
center poinx® and a density valuee, wherer ¢ = 0 (or a small
numberein order to avoid singularities) means no material in the
element and ¢ = 1 correspondsto a lled element. Thus, for an
optimal solution we can identify one set of poirfswith density
valuesr ¢ = 0 and another set with density values= 1. By
adopting the idea of support vector machines we can clagssfy
data(x®r¢) for all elements of the design domain into these
two sets by nding a separating hypersurface that maximtizes
distance from this boundary to the closest point of eachsset,
Figure 2. These points are called the support vectors arid wil
uniquely de ne the separating boundary between no matanidl
lled regions. By utilizing the kernel trick we can do thisifo
non-linear separable sets and by adding a penalty term to the
objective function we also handle misclassi ed points éiatly.
The kernel trick is performed for the dual problem which we
then solve by quadratic programmirggu@dprog.nin Matlab) or
sequential minimal optimization [12].

The implementation of the proposed SVM-based postpro-
cessing approach is tested on standard compliance prollems
well as on optimal solutions obtained for design domainsiin u
lateral contact with non-matching meshes. Most recently th
was treated in Stromberg [13] by maximizing the potential e
ergy formulated by using mortar contact conditions for gesi
domains with orthotropic elasticity. It is well-known thée op-
timal solution strongly depends on the boundary conditams
plied on the design domains. In fact, the optimal layout isaex
sensitive to unilateral contact conditions. This was destrated
in Stromberg and Klarbring [14] and Stromberg [15] by penfi-
ing topology optimization of structures with unilateralntact
conditions. In those paper, optimal layouts were obtaioed é-
sign domains in unilateral contact with matching mesheseHe
we treat design domains with non-matching meshes by adpptin

2

the celebrated mortar approach [16, 17]. Furthermoreg@asof
using the compliance, we choose the potential energy as-obje
tive function for the nested problem. In such manner, noaextr
adjoint adjoint equation is needed in the sensitivity asialy A
similar approach was used for topology optimization of hype
elastic bodies in Klarbring and Stromberg [18], se alsortbi

in [19].

Xo , F'e= 0 (no material)

y= 1

o

6/ _|/_/ SVM-based
e / boundary
* /+ re= 1 (material)
’ /// yI =1
Support vectors

X1
Figure 2. The basic idea of the proposed SVM-based postpro
cessing approach.

The outline of the paper is as follows: in the next section
we set up topology optimization for design domains in ueiiat
contact by maximizing the potential energy, in section 2 ngatt
non-matching meshes with the mortar approach, in sectibe 3 t

Copyright ¢ 2018 by ASME



formulation of soft non-linear support vector machines lis-p
sented, section 4 presents sequential minimal optimizatra,
nally, some numerical results are presented together with-
cluding remarks.

1 TOPOLOGY OPTIMIZATION

Let us consider a system of bodies which are parameterized
with the SIMP or RAMP model. The design parametegssare
collected inr . The stiffness matrix of the system is obtained by
the following assembly procedure (SIMP or RAMP):

(el
K=K(r)= r oke

e=1

(el le

or —_—
e 1t n(l re

1)

e

whereke is an element stiffness matrjx given by orthotropic elas-
ticity (for details see [13])n= 3 or4, represents an assembly
operator andg, is the number of elements. The system of bodies
is subjected to external forcEsand unilateral contact conditions
formulated by the mortar approach presented in the nexbsect
The state of equilibrium of the system is obtained by mini-
mizing the potential energy subjected to the unilaterabt@nts
between the bodies. The potential energy of the system reads

P(r;d)= %dTK(r)d Fd; (2)

whered contains nodal displacements. Thus, for a given density
distributionr = f, the equilibrium state is found by solving

( minP (r ;d)
d 3)
st.Csd+Cyd g O

whereCs andCy, are de ned by the mortar approach in the next
section. The corresponding KKT-conditions are given by

Kd+ CiPy+ Ch /P = F (4)

and

Pn 0;Csd+Cmd g O0;P, (Csd+Cnd @)= 0; (5)

where P, contains Lagrange multiplierB4, which are inter-
preted as contact forcagis a vector of initial gapg® and rep-
resents the Hadamard product. By solving these KKT-coouiti

using the augmented Lagrangian approach and a non-smooth

Newton method, we obtaid = d(r) andP, = Py(r). An early

implementation of the augmented Lagrangian approach wsing
non-smooth Newton method is found in [20].

For the nested state problem presented above, we maximi:
the potential energy, i.e.

8
% mraxP(r;d(r))

Nel R
< éverezvi
-oe=1

e

;o1 (6)

r 1,

whereVe represents the volume of elemeanfor re = 1, V is
T .
is a

The objective function in (6) can be interpreted by insegrtin
the KKT-conditions from (4) and (5) intB (r ;d(r)). This yields

1

1
F'd
2

P(r;d(r) = -

Pra:

(7)

Thus, maximizing the potential energy is equivalent to mizi
ing

Fld+ Plg:

The rst term is the de nition of the well-known compliance,
the second term implies th&) is minimized forg" > 0 and
maximized wherg” < 0. Of course, forg=0, the established
compliance optimization problem is recovered.

The sensitivity analysis is performed by using the corre-
sponding Lagrangian

L(rid;Py)= P(r;d)+ Pi(Csd+ Cud g2 (8)
At the state of equilibrium de ned by the KKT-conditions iB)(
itis clear that the Lagrangian is equivalentto the potéatiargy,
ie.

L =L(r;d(r);Pn(r))= P(r;d(r)): 9)
This is utilized in following way:
T T
E = E+ & E+ E ﬁ: (10)
re Tre d fre TPn fre
The rsttermin (10) equals
IL _ 1.K
— = — —0a, 11
fre 2 Tre (1)
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where

1K
—=nr

fire

1+
N lke or —nke:

@ r9)? (12)

The remaining terms are all zeros by the KKT-conditons in (4)
and (5). This is veri ed below.

11112 Kd F+ CLP,+ Cl,Ph=0; (13a)

L TP, TﬂPn
Csd+ Cyd =0 13b
w r. =(Cs md Q) . (13b)

Perhaps, the latter result is not obviousfgr= 0. However, this
is true by taking the derivative of the following formulatiof
the complementary condition in (5):

1
T P/ (Csd+ Cud @) =0 (14)
which yields
P, ' . 1d
o (Csd+Cmd @)+ Pp(Cs+Cum)e—=0 (15)
Tre re

which in turn proofs (13b) foP, = O

Figure 3. Non-matching meshes of a contact interface.

2 THE MORTAR APPROACH

Contact between deformable bodies with non-matching
meshes as shown in Figure 3 can ef ciently be treated by ap-
plying the mortar approach. The mortar approach is brie g-pr
sented here in a setting of small displacements. In the dase o

4

small displacements, the potential contact zone is idedtby
two contact surface§, that are almost coinciding, i.& G.

G belongs to the rst body\* (slave body) and¥ is a part of
the second on®? (master body). The virtual power of the total
contact pressure on this potential contact zone is de ned by

z
PP=  p wldA
G

4

g p W2dA; (16)

int

wherew' denotes the virtual velocity eld of respectively body.
Since,G= G &, (16) can also be written more compactly as

4

PR = G:IOi(Wil

w?) dA: (17)

By introducing the normal contact pressyxeand assuming that
the tangential forces are zero, we can rewrite (17) to

z

Ph = . pn(wi  w2)nidA;

int

(18)

wheren; represents the outward unit normal of the slave surface
G.

The nite element discretization of (18) is done by introduc
ing the following approximations:

n

pn= & NAIA (19a)
A=1
n

wh= § NAC (19b)
A=1
m

w2= § MAC (19¢)
A=1

Here,NA = NA(x) represents the shape functions @which
are taken to be the corresponding trace functions of theagjlob
shape functions ot. The total number of shape functioN$
onG is n. In a similar wayMA = MA(x) represents the shape
functions on&, which are taken to bein number. By inserting
(19) into (18), one gets

noat pop?
Ph=3& & NNPnidAlAcP & &  NAMBnidAl AP
A=1B=1 & A=1B=1 &
(20)
or written as
g & AB| 3
Pr=a a cs’ c.+aa AR (21)
A=1B=1 A=1B=1
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Figure 4.
where
z
C&E=  NANBnda; (22a)
e = NAMBn; dA: (22b)
G

The latter integral is known as the mortar integral. It iskyito
solve this integral because it cannot in general be divexdsab-
domains de ned by the nite elements depending on the non-
matching meshes. One way of xing this problem is to us a
guadrature rule with many integration points such as theattob
rule with 10 points presented in Table 1. This is utilizedhe t
present paper.

Table 1. Lobatto rule with f:=10 integration points.
Nint Xi W
10 0:1652789577 0.3275397612

0:4779249498 0.2920426836
0:7387738651 0.2248894320
0:9195339082 0.1333059908

1 0.0222222222

3 SUPPORT VECTOR MACHINE

In this section, we present the dual formulation of the soft
non-linear support vector machine. First we introduce thgi-o
nal linear SVM, which actually was suggested already in O 6
by Vapnik, then we apply the kernel trick and, nally, regrifze
the problem.

Let us consideN sampling points!, which take valueg =
1ory = 1. In this work, we let the sampling points be the
center points of the elements= x8,y' = 1 corresponds toe = 1

Design domains with boundary conditions.

and we set/ = 1 forre= 0. Furthermore, we assume that it
exists a hyper-plane

w x+ b= 0; (23)

which separate these sampling points into two subsets;tate t
only takes valueg' = 1 (material) and the other one with values
y' = 1 (no material). This is shown in Figure 2, where the
basic idea of the proposed SVM-based postprocessing agproa
is illustrated. We also assume that the following constsaame
satis ed:

y(w x+b) 1, i=1:N: (24)
The shortest distancesxbfrom a hyper-plane de ned in (23) is
given by

W

X = x+ dkwk: (25)
(25) inserted in (24) yields
y(w x+ b+ dkwk) 1 (26)
By utilizing (23), one obtains
d 1=kwk fory = 1; (27a)
d 1=kwk foryi= 1 (27b)

Thus, the lower bound on the shortest distajgjés maximized
by minimizingkwk. This is the key idea of the original linear
support vector machine formulation, which reads

8 1

< min Zkwk?

. (wb) 2 ) )
sl yW(w x'+h) O

(28)
i=1;:::N:
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Obviously, the closest sampling points to the optimal hyglane In addition, the latter part is zero by (31b). In conclusithre
dual support vector machine formulation is given by

w X+b =0 (29) 8
NN
Sminsd &1l yyx X &l
are obtained when : gi=1j=1 i=1
< Yo (35)
. i Est aliy=0o;
+b)=1 30 - =l
yw x ) (30) i 0 i= 10N

S_amplmg pqmts satlsfymg (30) are calleo! support vect . From the optimal solutioh of the dual support vector machine
Figure 2. It is also obvious that in the region between thé opt . . . .
in (35), we obtain the corresponding support vector macbine

mal hypgr-plang de ned by (29) and the support vect.ors Istgmp lution from the Karush-Kuhn-Tucker conditions in (31) as
of sampling points. Thus, the support vector machine foanul

tion in (28) nds a hyper-plane that maximizes the size okthi N
region and in our SVM-based postprocessing approach nds a W = é | _ini (36)
hyper-plane in the transition between material and non righte =1 !
Thus, the proposed SVM-based postprocessing approach nds
an hyper-surface that is positioned at the center of thebher and
gion caused by the density Itering.
The Karush-Kuhn-Tucker conditions of the support vector _ i i
machine in (28) are given by b=1 w x (87)

foranyl ; > 0. Notice, by using (36), the optimal hyper-plane in

0=w éN | iyixi: (31a) (29) can be written as
i=1
N ) N .
0= 3 ly; (31b) aliyx x+b =0 (38)
i=1 i=1
Iy O (31c) . ]
; i _ Notice also that you only need to do the summation over suppol
1 y(wx+b 0 (31d) vector indices, because otherwisg equals zero by the KKT-
[i 1 y(w x'+b) =0 (31e) conditions.

For non-separable sets of sampling poirtsthe support
vector machine approach presented above will of course nc
work. However, one might transform the sample set to a nev
space where it become separable, let sax byx(x). In this

_ o 1, N i i ) new space, the only difference in the derivations of the dupt
L=L{wh)= Eka * gll 1 Y(w x+b) o (32) port vector machine in (35) and (38) is the appearance of a ne
B scalar product x';x! > instead of' xI. Thus, we do not have
to know the explicit expression of the transformation x(x),

The corresponding Lagrangian function is

_Furthermore, the dual formulation of the support vector e but only the expression of the scalar product of the new spac
in (28) reads The explicit expression of this scalar product is known tdatee
kernel function, i.e.
maxminL (I ;w;b): (33)
10 (w;b)

k(x';x)) = < xi(xi);Xj(Xj) > (39)

By inserting (31a) in (32), one obtains Consequently, by using an appropriate kernel function B) (3

instead of' x/, e.g. the Gaussian kernel

1 N N o ) N N .
La;w()b)= & alilyyx xl+ §1i baly:
2i:1j:l i=1 i=1 k= k(x.z): exp kx Zk2 . (40)
(34) : 2s2
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Figure 5. Element densities and the corresponding soft non-lineppett vector machine for Michell's problem.

the sample set can be separated by

I, yk(xX;x)+ b = 0: (41)

Qoz

i=1

Even if we perform a suitable kernel trick, we might have
some misclassi ed points such that (35) does not converge to
solution. This can be treated by applying a regularizatidi3s).
The established soft regularization of (28) is

8 1 N
2 min Zkwk?+ C3 v
(wbyv) 2 =1 (42)
gst 1 vi y(wx'+b) O0; i=1;::N;
R VA 0 i=1;:0N;

The Karush-Kuhn-Tucker conditions in (31)are then modify b
adding the following conditions:

C Iy 0 (43a)
vi O (43b)
vi(C I)=20: (43c)

The corresponding Lagrangian becomes

o . N
Ll jyyx X+ @1
i=1

Qo=
Qoz

N I\
L alivtcav; 44

i=1 i=1

NI =

1j=1

where the two latter terms cancel out due to (43c). Thus, the
only difference of the dual support vector machine in (35) fo

7

this regularization is the appearance of an upper bound,are.

T
% minz & & Lil yylkodixl) & 1
2. et
8I—1j—1 i=1
< N (45)
gs.t i§.1| iy =0,
' oI, C i=1::N

Finally, 0< | j < C must be satis ed in order for (37) to be valid.
Here, we have also introduced the kerkét;y) in the objec-
tive function. The soft non-linear SVM in (45) is solved ugin
guadprog.nin Matlab or the sequential minimal optimization ap-
proach presented in the next section.

4 SEQUENTIAL MINIMAL OPTIMIZATION
A most simple approach, called the coordinate descer
method, for solving the unconstrained problem

min f(x) (46)

is to minimizef = f(x) with respect to only one component
while keeping the remaining componentsxtonstant. After
convergenced is minimized with respect to a new component
keeping the other coordinates at constant values. Thiedtoe

is then continued in sequence until convergence is obtaitfed
we also include a linear constant as

ap+ axg+ i+ ann=0; (47)

then we can extend the coordinate descent method by mimignizi
f with respect to two components, sayandx,, while keeping

X2 = X2(X1) into (46) we recover the original coordinate descent
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Figure 6. Element densities and the corresponding soft non-lineppsett vector machine for the contact problem with non-miigh

meshes.

approach. This is the main idea of sequential minimal oami
tion for solving the dual soft non-linear support vector tmae
in (45).

Now, let us treat the SVM in (45) by only consider two com-

ponents ol as variables, let saly; andl », and the remaining

the following problem:

gaﬂ%LULb)

N

< ) i

Ly +1y%= Al (48)

§ st !
0 I CO I, C

where

1 1
L(I4l2)= §k11| 24 ékzzl 2+ yiy2kool 4l o+ 21

N N
ly' @ livki+ 122 Q livka 11 12+ D; (49)
i=3 i=3

kij = k(x';x)) and D is a constant. Notice that

N .
wi= A liyki= o) b 1aytky | 2y?kei (50)
j=3

fori= 1;2, where

f(x) = g. Liy'k(x'; %)+ b (51)
i=1

We will usew; in the derivation presented below.

The idea of sequential minimal optimization is now to solve
(48) for pairwise components bfand to do that in sequence for

different pairs ol until the global KKT-conditions for (45) are
satis ed, which read

li O (52a)
1 vy v 0 (52b)
i 1 yf(x) v =0 (52¢)
vi O (52d)
i C O (52e)
Vi(li C): 0: (52f)

Thus, if 0O< | j < C, then
yf(x)= 1 (53)

Furthermore,

Yi6s it e 4

The coordinate descent is now adopted by de ning=
I 1(I 2) from the constraint

l1+yYlo=g (55)
where
N )
9= y'aly=17%+yyise (56)
i=3

and| 9 is representing starting values lof (i = 1;2). Notice
that(y')? = 1is utilized in (55). From (55), we have

li=11l2)=g Y2 (57)
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By using this in (49), we obtaih. = L(l2) = L(l 1(I 2);1 2).
Thus, the problem in (48) becomes

minL.(12) . (58)

s.t.l! P

wherel! and| Y represent the lower and upper limits ba,
respectively. These limits are de ned by the box constgint
0o Iy C.

The necessary optimality condition for (58) reads

d _ LM, 9L

CPIE PR T 9
where
Tkt ot v 1,
o, |ty yketyw L (60a)
1¥|—"2 = | okoo+ | 1y yPkao+ YW, 1 (60D)
E:—i= yiy?: (60c)
Inserting (60) into (59) yields
| = YAk ki) + YW wo)  ylyA+ 1. (61)

kizt+ koo ke

5 NUMERICAL EXAMPLES

non-linear SVM for the solution of densities according te #p-
proach outlined in the previous sections and the resultotqa

to the right in Figure 5. The resemblance of the densities an
the SVM is very clear. The number of elements is 10000 and th
number of support vectors is 233.

Figure 7. The upper right corner of the contact region is zoomed
in showing the non-matching meshes clearly, which are éxkat
by using the mortar approach.

The right picture of Figure 4 shows two design domains in
unilateral contact with non-matching meshes which we trétt
the mortar approach. In Figure 7, the upper right corner ef th
contact region is zoomed in, clearly showing the non-matghi
meshes used in the problem. The smaller domain of the two i
xed at the center and the other domain is subjected to acadrti
force at the center node of the right side. This force is ae:aty

The SVM-based postprocessing approach is implemented in applying two load cases: one with the force point upwards ant

our in-house toolbox TopoBaxor topology optimization. This
rst implementation is done for 2D-problems and so far itrese
to work very well. This is demonstrated here by studying the
problems for the design domains presented in Figure 4. The le
picture in this gure shows the design domain and the boupdar
conditions for one of Michell's classical benchmarks. Thater
nodes of the left and right side of the design domain are xed a
a vertical force is applied at the center of the design domain

A typical solution of element densities for Michell's prob-
lem is presented in the left plot of Figure 5, clearly showiing
transition between densities of zeros and ones dependitigeon
Iter radius. This is sometimes removed by applying a heavi-
side lter. This is not done in this work. The idea of the SVM-
based postprocessing approach is instead to nd a boundary i
this region automatically. This is obtained by training tudt

Iwww.fema.se

the other one with the load pointing downwards. The solutibn
densities is plotted to the left in Figure 6 and the corresjoum
SVM is shown to the right in the same gure. The resemblance
of the SVM and the solution of densities is also clear for this
example. The number of elements is 18328 and the number ¢
support vectors is now 543.

Finally, we demonstrate the SVM approach for a real appli-
cation. A die of a stamping tool is rst optimized using topgly
optimization. A trade-off curve of compliance and mateigalu-
tomatically generated using our in-house toolbox TopoB&.
optimal solution on the trade-off curve is chosen and it enth
interpreted using our suggested SVM approach. The nal CAD
design is shown in Figure 8.

CONCLUDING REMARKS
An approach for postprocessing topology optimization
solutions automatically by using soft non-linear supp@tter
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Figure 8. Optimal CAD design of a stamping tool generated by
our SVM approach.

machines is proposed and implemented. The implementation

is done in our in-house toolbox TopoBoxwyw.fema.se )
for two-dimensional design domains. Preliminary resuls a
most promising showing that the SVM represents the tramsiti

boundary between densities with zeros and ones most accu-

rately. One should remark that no additional Itering hagihe
utilized. In a near future the implementation will be done fo
three-dimensional design domains. Our believe is thatdlsis
will produce promising results and that the next step thealdvo
be to integrate this SVM-based postprocessing approathavit
CAD software. The CAD geometry is then simply de ned by
the support vectors. This is a topic for future work.
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